Title: Codeforces Round #258 (Div. 2) Devu and Flowers Question meaning: n boxes, the i-th box has fi flowers, the flowers in each box are exactly the same, and the flowers in different boxes are different, find the following The number of options for removing s flowers from n boxes. n<=20, s<=1e14, fi<=1e12. For permutation and combination questions, the inclusion exclusion principle can be used to solve the problem. There are 2 ways to write dfs and collection. The following is how to write a collection.
#includeusing namespace std;const int MOD = 1e9 + 7;typedef long long LL;LL invv[25];LL inv(LL x)/// 求逆元{ return x == 1 ? 1LL : (MOD - MOD / x) * inv (MOD % x) % MOD;}LL Cmn(LL n, LL m) ///求组合数{ LL ret = 1; for (int i = 1; i <= m; i++) ret = (n - i + 1) % MOD * ret % MOD * invv[i] % MOD; return ret;}int calc(int x){ int ret = 0; while (x) {// x -= x & (-x); x=x&(x-1); ret ^= 1; } return ret;}int n;LL s, a[25];int main(){ for (int i = 1; i < 25; i++) invv[i] = inv(i); cin >> n >> s; for (int i = 0; i < n; i++) cin >> a[i]; int ALL = (1 << n) - 1; LL ans = 0; for (int i = 0; i <= ALL; i++)///遍历所有集合 { LL nows = s; int num = 0;///统计当前集合元素个数,以确定符号 for (int j = 0; j < n; j++) { if (i & (1 << j)) { nows -= a[j] + 1; num++; } } if (nows < 0) continue; if (num & 1)///集合含有奇数个元素,符号为- ans -= Cmn(nows + n - 1, n - 1); else///集合含有偶数个元素,符号为+ ans += Cmn(nows + n - 1, n - 1); ans %= MOD; } cout << (ans + MOD) % MOD << endl; return 0;}