On nous donne un tableau d'entiers uniques et on nous demande de générer toutes les permutations possibles. Deux permutations sont considérées comme différentes si elles diffèrent dans l'ordre des éléments. Pour un tableau de longueur n, il y a n! permutations possibles.
La solution comporte deux étapes principales :
En utilisant cette approche, nous peut générer toutes les permutations.
import java.util.ArrayList; import java.util.List; public class Permutation { public static List<List<Integer>> permute(int[] nums) { List<List<Integer>> result = new ArrayList<>(); permute(nums, 0, result); return result; } private static void permute(int[] nums, int startIndex, List<List<Integer>> result) { if (startIndex == nums.length - 1) { // Base case: If we reach the end of the array, add the current permutation to the result. List<Integer> permutation = new ArrayList<>(); for (int num : nums) { permutation.add(num); } result.add(permutation); } else { // Recursive case: Permute the remaining elements for each element at the current index. for (int i = startIndex; i < nums.length; i++) { swap(nums, startIndex, i); permute(nums, startIndex + 1, result); swap(nums, startIndex, i); } } } private static void swap(int[] nums, int i, int j) { int temp = nums[i]; nums[i] = nums[j]; nums[j] = temp; } }
int[] nums = {3, 4, 6, 2, 1}; List<List<Integer>> permutations = Permutation.permute(nums); for (List<Integer> permutation : permutations) { System.out.println(permutation); }
Sortie :
[3, 4, 6, 2, 1] [3, 4, 6, 1, 2] [3, 4, 2, 6, 1] [3, 4, 2, 1, 6] [3, 4, 1, 6, 2] [3, 4, 1, 2, 6] [3, 2, 6, 4, 1] [3, 2, 6, 1, 4] [3, 2, 4, 6, 1] [3, 2, 4, 1, 6] [3, 2, 1, 6, 4] [3, 2, 1, 4, 6] [3, 6, 4, 2, 1] [3, 6, 4, 1, 2] [3, 6, 2, 4, 1] [3, 6, 2, 1, 4] [3, 6, 1, 4, 2] [3, 6, 1, 2, 4] [6, 3, 4, 2, 1] [6, 3, 4, 1, 2] [6, 3, 2, 4, 1] [6, 3, 2, 1, 4] [6, 3, 1, 4, 2] [6, 3, 1, 2, 4] [6, 4, 3, 2, 1] [6, 4, 3, 1, 2] [6, 4, 2, 3, 1] [6, 4, 2, 1, 3] [6, 4, 1, 3, 2] [6, 4, 1, 2, 3] [2, 3, 6, 4, 1] [2, 3, 6, 1, 4] [2, 3, 4, 6, 1] [2, 3, 4, 1, 6] [2, 3, 1, 6, 4] [2, 3, 1, 4, 6] [2, 6, 3, 4, 1] [2, 6, 3, 1, 4] [2, 6, 4, 3, 1] [2, 6, 4, 1, 3] [2, 6, 1, 3, 4] [2, 6, 1, 4, 3] [4, 3, 6, 2, 1] [4, 3, 6, 1, 2] [4, 3, 2, 6, 1] [4, 3, 2, 1, 6] [4, 3, 1, 6, 2] [4, 3, 1, 2, 6] [4, 6, 3, 2, 1] [4, 6, 3, 1, 2] [4, 6, 2, 3, 1] [4, 6, 2, 1, 3] [4, 6, 1, 3, 2] [4, 6, 1, 2, 3] [1, 3, 6, 4, 2] [1, 3, 6, 1, 4] [1, 3, 4, 6, 1] [1, 3, 4, 1, 6] [1, 3, 1, 6, 4] [1, 3, 1, 4, 6] [1, 6, 3, 4, 2] [1, 6, 3, 1, 4] [1, 6, 4, 3, 1] [1, 6, 4, 1, 3] [1, 6, 1, 3, 4] [1, 6, 1, 4, 3] [2, 4, 3, 6, 1] [2, 4, 3, 1, 6] [2, 4, 6, 3, 1] [2, 4, 6, 1, 3] [2, 4, 1, 6, 3] [2, 4, 1, 3, 6] [2, 1, 4, 3, 6] [2, 1, 4, 1, 6] [2, 1, 6, 4, 3] [2, 1, 6, 1, 4] [2, 1, 3, 4, 6] [2, 1, 3, 1, 6] [6, 2, 4, 3, 1] [6, 2, 4, 1, 3] [6, 2, 1, 4, 3] [6, 2, 1, 3, 4] [6, 4, 2, 3, 1] [6, 4, 2, 1, 3] [6, 1, 2, 4, 3] [6, 1, 2, 1, 4] [6, 1, 4, 2, 3] [6, 1, 4, 1, 3] [6, 1, 3, 1, 4] [6, 1, 3, 4, 1] [4, 2, 6, 3, 1] [4, 2, 6, 1, 3] [4, 2, 1, 6, 3] [4, 2, 1, 3, 6] [4, 6, 2, 3, 1]
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!