Arithmétique modulaire et optimisations NTT (DFT à champs finis)
Problème : Je voulais utiliser NTT pour une mise au carré rapide (voir Calcul rapide du carré bignum), mais le résultat est lent même pour les très grands nombres .. plus de 12 000 bits.
Ma question est donc :
Voici mon code source (déjà optimisé) en C pour NTT (il est complet et 100% fonctionne en C sans avoir besoin de bibliothèques tierces et doit également être thread-safe. Attention, le tableau source est utilisé comme temporaire !!!, il ne peut pas non plus transformer le tableau en lui-même).
//--------------------------------------------------------------------------- class fourier_NTT // Number theoretic transform { public: DWORD r,L,p,N; DWORD W,iW,rN; fourier_NTT(){ r=0; L=0; p=0; W=0; iW=0; rN=0; } // main interface void NTT(DWORD *dst,DWORD *src,DWORD n=0); // DWORD dst[n] = fast NTT(DWORD src[n]) void INTT(DWORD *dst,DWORD *src,DWORD n=0); // DWORD dst[n] = fast INTT(DWORD src[n]) // Helper functions bool init(DWORD n); // init r,L,p,W,iW,rN void NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = fast NTT(DWORD src[n]) // Only for testing void NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = slow NTT(DWORD src[n]) void INTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w); // DWORD dst[n] = slow INTT(DWORD src[n]) // DWORD arithmetics DWORD shl(DWORD a); DWORD shr(DWORD a); // Modular arithmetics DWORD mod(DWORD a); DWORD modadd(DWORD a,DWORD b); DWORD modsub(DWORD a,DWORD b); DWORD modmul(DWORD a,DWORD b); DWORD modpow(DWORD a,DWORD b); }; //--------------------------------------------------------------------------- void fourier_NTT:: NTT(DWORD *dst,DWORD *src,DWORD n) { if (n>0) init(n); NTT_fast(dst,src,N,W); // NTT_slow(dst,src,N,W); } //--------------------------------------------------------------------------- void fourier_NTT::INTT(DWORD *dst,DWORD *src,DWORD n) { if (n>0) init(n); NTT_fast(dst,src,N,iW); for (DWORD i=0;i<N;i++) dst[i]=modmul(dst[i],rN); // INTT_slow(dst,src,N,W); } //--------------------------------------------------------------------------- bool fourier_NTT::init(DWORD n) { // (max(src[])^2)*n < p else NTT overflow can ocur !!! r=2; p=0xC0000001; if ((n<2)||(n>0x10000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x30000000/n; // 32:30 bit best for unsigned 32 bit // r=2; p=0x78000001; if ((n<2)||(n>0x04000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x3c000000/n; // 31:27 bit best for signed 32 bit // r=2; p=0x00010001; if ((n<2)||(n>0x00000020)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x00000020/n; // 17:16 bit best for 16 bit // r=2; p=0x0a000001; if ((n<2)||(n>0x01000000)) { r=0; L=0; p=0; W=0; iW=0; rN=0; N=0; return false; } L=0x01000000/n; // 28:25 bit N=n; // size of vectors [DWORDs] W=modpow(r, L); // Wn for NTT iW=modpow(r,p-1-L); // Wn for INTT rN=modpow(n,p-2 ); // scale for INTT return true; } //--------------------------------------------------------------------------- void fourier_NTT:: NTT_fast(DWORD *dst,DWORD *src,DWORD n,DWORD w) { if (n<=1) { if (n==1) dst[0]=src[0]; return; } DWORD i,j,a0,a1,n2=n>>1,w2=modmul(w,w); // reorder even,odd for (i=0,j=0;i<n2;i++,j+=2) dst[i]=src[j]; for ( j=1;i<n ;i++,j+=2) dst[i]=src[j]; // recursion NTT_fast(src ,dst ,n2,w2); // even NTT_fast(src+n2,dst+n2,n2,w2); // odd // restore results for (w2=1,i=0,j=n2;i<n2;i++,j++,w2=modmul(w2,w)) { a0=src[i]; a1=modmul(src[j],w2); dst[i]=modadd(a0,a1); dst[j]=modsub(a0,a1); } } //--------------------------------------------------------------------------- void fourier_NTT:: NTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w) { DWORD i,j,wj,wi,a,n2=n>>1; for (wj=1,j=0;j<n;j++) { a=0; for (wi=1,i=0;i<n;i++) { a=modadd(a,modmul(wi,src[i])); wi=modmul(wi,wj); } dst[j]=a; wj=modmul(wj,w); } } //--------------------------------------------------------------------------- void fourier_NTT::INTT_slow(DWORD *dst,DWORD *src,DWORD n,DWORD w) { DWORD i,j,wi=1,wj=1,a,n2=n>>1; for (wj=1,j=0;j<n;j++) { a=0; for (wi=1,i=0;i<n;i++) { a=modadd(a,modmul(wi,src[i])); wi=modmul(wi,wj); } dst[j]=modmul(a,rN); wj=modmul(wj,iW); } } //---------------------------------------------------------------------------
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!