Home > Web Front-end > CSS Tutorial > Attribute analysis of canvas lines

Attribute analysis of canvas lines

小云云
Release: 2018-03-28 10:34:05
Original
1893 people have browsed it

This article mainly introduces to you the relevant information on the detailed explanation of the properties of canvas lines. The editor thinks it is quite good, so I will share it with you now, hoping to help you.

1. Line Cap lineCap

Values: butt (default value), round head, square head

var canvas=document.getElementById("canvas");

canvas.width=800;
canvas.height=800;

var context=canvas.getContext("2d");

context.lineWidth=40;
context.strokeStyle="#005588";

//三个beginpath()画了3条平行线
context.beginPath();
context.moveTo(100,200);
context.lineTo(700,200);
context.lineCap="butt";
context.stroke();

context.beginPath();
context.moveTo(100,400);
context.lineTo(700,400);
context.lineCap="round";
context.stroke();

context.beginPath();
context.moveTo(100,600);
context.lineTo(700,600);
context.lineCap="square";
context.stroke();

//baseline
context.lineWidth=1;
context.strokeStyle="#27a";
context.moveTo(100,100);
context.lineTo(100,700);
context.moveTo(700,100);
context.lineTo(700,700);
context.stroke();
Copy after login

When round is used for animation, rounded corners can be drawn directly. The effect of lineCap can only be used at the beginning and end of the line segment, not at the connection.

lineCap="square" can be used to completely close the line segment when it is closed, but it is still recommended to use clothPath() to close it.

var canvas=document.getElementById("canvas");

canvas.width=800;
canvas.height=800;

var context=canvas.getContext("2d");

context.beginPath();
context.moveTo(100, 350);
context.lineTo(500,350);
context.lineTo(500,200);
context.lineTo(700,400);
context.lineTo(500,600);
context.lineTo(500,450);
context.lineTo(100,450);
context.lineTo(100,350);
// context.closePath(); //推荐

context.lineWidth=10;
context.lineCap="square"; //不推荐
context.fillStyle="yellow";
context.strokeStyle="#058"

context.fill();
context.stroke();
Copy after login

2. Draw a five-pointed star and explain other status attributes of the line

The five angles on the circle bisect 360°, each angle is 72°, 90°-72°=18°

The angle on the small circle bisects 72°, 18°+36°=54°

Angle to radian - radian=angle*π/180 That is (18+i*72) *Math.PI/180

var canvas=document.getElementById("canvas");

canvas.width=800;
canvas.height=800;

var context=canvas.getContext("2d");
context.beginPath();
//角度转弧度:除以180*PI
for(var i=0;i<5;i++){
    context.lineTo(Math.cos((18+i*72)/180*Math.PI)*300+400,
        -Math.sin((18+i*72)/180*Math.PI)*300+400);
    context.lineTo(Math.cos((54+i*72)/180*Math.PI)*150+400,
        -Math.sin((54+i*72)/180*Math.PI)*150+400);
}

context.closePath();

context.lineWidth=10;
context.stroke();
Copy after login

is encapsulated into a function:

window.onload=function(){
    var canvas=document.getElementById("canvas");

    canvas.width=800;
    canvas.height=800;

    var context=canvas.getContext("2d");
    context.lineWidth=10;
    drawStar(context,150,300,400,400)
}        

function drawStar(ctx,r,R,x,y,){
    ctx.beginPath();
    //角度转弧度:除以180*PI
    for(var i=0;i<5;i++){
        ctx.lineTo(Math.cos((18+i*72)/180*Math.PI)*R+x,
            -Math.sin((18+i*72)/180*Math.PI)*R+y);
            ctx.lineTo(Math.cos((54+i*72)/180*Math.PI)*r+x,
            -Math.sin((54+i*72)/180*Math.PI)*r+y);
    }

    ctx.closePath();
    ctx.stroke();
}
Copy after login

Modify the small r=80, 200, 400 respectively to get the following Graphic

Add a clockwise rotation parameter: rot

window.onload=function(){
    var canvas=document.getElementById("canvas");

    canvas.width=800;
    canvas.height=800;

    var context=canvas.getContext("2d");
    context.lineWidth=10;
    drawStar(context,150,300,400,400,30);
}        




//rot顺时针旋转的角度
function drawStar(ctx,r,R,x,y,rot){
    ctx.beginPath();
    //角度转弧度:除以180*PI
    for(var i=0;i<5;i++){
        ctx.lineTo(Math.cos((18+i*72-rot)/180*Math.PI)*R+x,
            -Math.sin((18+i*72-rot)/180*Math.PI)*R+y);
            ctx.lineTo(Math.cos((54+i*72-rot)/180*Math.PI)*r+x,
            -Math.sin((54+i*72-rot)/180*Math.PI)*r+y);
    }

    ctx.closePath();
    ctx.stroke();
}
Copy after login

The effect of rotating 30 degrees is as follows:

3. Line connection lineJoin and miterLimit

1. lineJoin value

miter(default ) always presents a sharp corner, bevel bevel, round corner

bevel is like the effect of a ribbon folded down.

2. Miter-related miterLimit attributes

Set the small r to 30, lineJoin is miter, the effect is as follows: the corners are not extended into sharp corners, but are displayed in the form of bevel.

context.lineJoin="miter";
drawStar(context,30,300,400,400,30);
Copy after login

Why?

Because the default value of context.miterLimit=10 is 10,

miterlimit will only be effective when lineJoin is miter.

miterLimit refers to the maximum value of the distance between the interior angle and the exterior angle generated when using miter as the way to connect lines.

The default value is 10, which means the maximum value is 10px. Once it exceeds 10px, it will be displayed in bevel mode.

When the inner circle radius r is set to 30, the sharp angle formed is very sharp, and the distance between the inner corner and the outer corner exceeds the miterLimit of 10.

Now make the miterlimit larger and change it to 20, the effect is as follows:

context.lineJoin="miter";
 context.miterLimit=20;
 drawStar(context,30,300,400,400,30);
Copy after login

Note: miterLimit is not the distance from the white tip to the black tip. This distance is much larger than 20px.

When miterLimit is generated, the line must have width, and the sharp corner of the middle line of the line with width is the direct distance from the outer sharp corner.

canvas gives a miterLimit experience value of 10. Only in extremely special circumstances, when very sharp corners need to be represented, miterLimit needs to be modified.

The above is the detailed content of Attribute analysis of canvas lines. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template