> 웹 프론트엔드 > HTML 튜토리얼 > Codeforces Round #281 (Div. 2)E(数学)_html/css_WEB-ITnose

Codeforces Round #281 (Div. 2)E(数学)_html/css_WEB-ITnose

WBOY
풀어 주다: 2016-06-24 11:52:32
원래의
1154명이 탐색했습니다.

E. Vasya and Polynomial

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Vasya is studying in the last class of school and soon he will take exams. He decided to study polynomials. Polynomial is a function P(x)?=?a0?+?a1x1?+?...?+?anxn. Numbers ai are called coefficients of a polynomial, non-negative integer n is called a degree of a polynomial.

Vasya has made a bet with his friends that he can solve any problem with polynomials. They suggested him the problem: "Determine how many polynomials P(x) exist with integer non-negative coefficients so that , and , where  and b are given positive integers"?

Vasya does not like losing bets, but he has no idea how to solve this task, so please help him to solve the problem.

Input

The input contains three integer positive numbers  no greater than 1018.

Output

If there is an infinite number of such polynomials, then print "inf" without quotes, otherwise print the reminder of an answer modulo109?+?7.

Sample test(s)

input

2 2 2
로그인 후 복사

output

input

2 3 3
로그인 후 복사

output


题意:RT


思路:给出了t,a,b,那么有


            f(t)=a0+a1*t+a2*t^2+...+an*t^n=a


           f(a)=a0+a1*a+a2*a^2+...+an*a^n=b


           a1+a2*t+...+an*t^(n-1)=(a-a0)/t


           a1+a2*a+...+an*a^(n-1)=(b-a0)/a


           那么(a-a0)%t=0 && (b-a0)%a=0


           a%t=a0%t && b%a=a0%a


           因为b>a


           所以b=k*a+a0;


          又因为a0


          所以a0=b%a 或者 a0=b%a+a


          这样递归求解各个常数就可以了


원천:php.cn
본 웹사이트의 성명
본 글의 내용은 네티즌들의 자발적인 기여로 작성되었으며, 저작권은 원저작자에게 있습니다. 본 사이트는 이에 상응하는 법적 책임을 지지 않습니다. 표절이나 침해가 의심되는 콘텐츠를 발견한 경우 admin@php.cn으로 문의하세요.
인기 튜토리얼
더>
최신 다운로드
더>
웹 효과
웹사이트 소스 코드
웹사이트 자료
프론트엔드 템플릿