Home > Web Front-end > JS Tutorial > Nine commonly used sorting algorithms in JavaScript_javascript skills

Nine commonly used sorting algorithms in JavaScript_javascript skills

WBOY
Release: 2016-05-16 16:38:01
Original
1418 people have browsed it

Written interviews often involve various algorithms. This article briefly introduces some commonly used algorithms and implements them with JavaScript.

1. Insertion sort

1) Introduction to algorithm

The algorithm description of Insertion-Sort is a simple and intuitive sorting algorithm. It works by constructing an ordered sequence. For unsorted data, it scans from back to front in the sorted sequence, finds the corresponding position and inserts it. In the implementation of insertion sort, in-place sorting is usually used (that is, sorting that only uses O(1) extra space). Therefore, during the scanning process from back to front, it is necessary to repeatedly and gradually shift the sorted elements backward. , providing insertion space for the latest element.

2) Algorithm description and implementation

Generally speaking, insertion sort is implemented on arrays using in-place. The specific algorithm is described as follows:

Starting from the first element, the element can be considered to have been sorted;
Take out the next element and scan from back to front in the sorted element sequence;
If the element (sorted) is larger than the new element, move the element to the next position;
Repeat step 3 until you find a position where the sorted element is less than or equal to the new element;
After inserting the new element at that position;
Repeat steps 2~5.
JavaScript code implementation:

 function insertionSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     for (var i = 1; i < array.length; i++) {
       var key = array[i];
       var j = i - 1;
       while (j >= 0 && array[j] > key) {
         array[j + 1] = array[j];
         j--;
       }
      array[j + 1] = key;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}
Copy after login

3) Algorithm analysis

Best case: the input array is sorted in ascending order. T(n) = O(n)
Worst case: the input array is sorted in descending order. T(n) = O(n2)
Average case: T(n) = O(n2)

2. Binary insertion sort

1) Algorithm introduction

Binary-insert-sort sorting is a sorting algorithm that makes small changes to the direct insertion sorting algorithm. The biggest difference from the direct insertion sort algorithm is that it uses a binary search method to find the insertion position, which has a certain improvement in speed.

2) Algorithm description and implementation

Generally speaking, insertion sort is implemented on arrays using in-place. The specific algorithm is described as follows:

Starting from the first element, the element can be considered to have been sorted;
Take out the next element and use binary search to find the position of the first number larger than it in the sorted element sequence;
After inserting the new element at that position;
Repeat the above two steps.
JavaScript code implementation:

function binaryInsertionSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     for (var i = 1; i < array.length; i++) {
       var key = array[i], left = 0, right = i - 1;
       while (left <= right) {
         var middle = parseInt((left + right) / 2);
         if (key < array[middle]) {
           right = middle - 1;
         } else {
          left = middle + 1;
        }
      }
      for (var j = i - 1; j >= left; j--) {
        array[j + 1] = array[j];
      }
      array[left] = key;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}
Copy after login

3) Algorithm analysis

Best case: T(n) = O(nlogn)
Worst case: T(n) = O(n2)
Average case: T(n) = O(n2)

3. Selection sort

1) Algorithm introduction

Selection-sort is a simple and intuitive sorting algorithm. How it works: First find the smallest (large) element in the unsorted sequence, store it at the beginning of the sorted sequence, then continue to find the smallest (large) element from the remaining unsorted elements, and then put it into the sorted sequence. the end of. And so on until all elements are sorted.

2) Algorithm description and implementation

Direct selection sorting of n records can obtain ordered results through n-1 direct selection sorting passes. The specific algorithm is described as follows:

Initial state: the unordered area is R[1..n], and the ordered area is empty;
When the i-th sorting (i=1,2,3...n-1) starts, the current ordered area and unordered area are R[1..i-1] and R(i..n) respectively. This sorting operation selects the record R[k] with the smallest key from the current unordered area, and exchanges it with the first record R in the unordered area, so that R[1..i] and R[i 1.. n) Become a new ordered area with the number of records increased by 1 and a new unordered area with the number of records reduced by 1 respectively;
At the end of n-1 passes, the array is sorted.

JavaScript code implementation:

 function selectionSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     var len = array.length, temp;
     for (var i = 0; i < len - 1; i++) {
       var min = array[i];
       for (var j = i + 1; j < len; j++) {
         if (array[j] < min) {
           temp = min;
           min = array[j];
          array[j] = temp;
        }
      }
      array[i] = min;
    }
    return array;
  } else {
    return 'array is not an Array!';
  }
}
Copy after login

3) Algorithm analysis

Best case: T(n) = O(n2)
Worst case: T(n) = O(n2)
Average case: T(n) = O(n2)

4. Bubble sort

1) Algorithm introduction

Bubble sort is a simple sorting algorithm. It repeatedly walks through the sequence to be sorted, comparing elements two at a time and swapping them if they are in the wrong order. The work of visiting the array is repeated until no more exchanges are needed, which means that the array has been sorted. The name of this algorithm comes from the fact that smaller elements will slowly "float" to the top of the array through swapping.

2) Algorithm description and implementation

The specific algorithm is described as follows:

Compare adjacent elements. If the first one is larger than the second one, swap them both;
Do the same for each pair of adjacent elements, from the first pair at the beginning to the last pair at the end, so that the last element should be the largest number;
Repeat the above steps for all elements except the last one;
Repeat steps 1~3 until sorting is completed.
JavaScript code implementation:

 function bubbleSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     var len = array.length, temp;
     for (var i = 0; i < len - 1; i++) {
       for (var j = len - 1; j >= i; j--) {
         if (array[j] < array[j - 1]) {
           temp = array[j];
           array[j] = array[j - 1];
           array[j - 1] = temp;
         }
       }
     }
     return array;
   } else {
     return 'array is not an Array!';
   }
 }
Copy after login

3)算法分析

最佳情况:T(n) = O(n)
最差情况:T(n) = O(n2)
平均情况:T(n) = O(n2)

五、快速排序

1)算法简介

  快速排序的基本思想:通过一趟排序将待排记录分隔成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

2)算法描述和实现

  快速排序使用分治法来把一个串(list)分为两个子串(sub-lists)。具体算法描述如下:

从数列中挑出一个元素,称为 "基准"(pivot);
重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序。
  JavaScript代码实现:

 //方法一
 function quickSort(array, left, right) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array' && typeof left === 'number' && typeof right === 'number') {
     if (left < right) {
       var x = array[right], i = left - 1, temp;
       for (var j = left; j <= right; j++) {
         if (array[j] <= x) {
           i++;
           temp = array[i];
           array[i] = array[j];
           array[j] = temp;
         }
       }
       quickSort(array, left, i - 1);
       quickSort(array, i + 1, right);
     };
   } else {
     return 'array is not an Array or left or right is not a number!';
   }
 } 
 var aaa = [3, 5, 2, 9, 1];
 quickSort(aaa, 0, aaa.length - 1);
 console.log(aaa);
 
 //方法二
 var quickSort = function(arr) {
   if (arr.length <= 1) { return arr; }
   var pivotIndex = Math.floor(arr.length / 2);
   var pivot = arr.splice(pivotIndex, 1)[0];
   var left = [];
   var right = [];
   for (var i = 0; i < arr.length; i++){
     if (arr[i] < pivot) {
       left.push(arr[i]);
     } else {
       right.push(arr[i]);
     }
   }
   return quickSort(left).concat([pivot], quickSort(right));
 };

Copy after login

3)算法分析

最佳情况:T(n) = O(nlogn)
最差情况:T(n) = O(n2)
平均情况:T(n) = O(nlogn)

六、堆排序

1)算法简介

  堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

2)算法描述和实现

  具体算法描述如下:

将初始待排序关键字序列(R1,R2....Rn)构建成大顶堆,此堆为初始的无序区;
将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,......Rn-1)和新的有序区(Rn),且满足R[1,2...n-1]<=R[n];
由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,......Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2....Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
  JavaScript代码实现:

 /*方法说明:堆排序
 @param array 待排序数组*/      
 function heapSort(array) {
   if (Object.prototype.toString.call(array).slice(8, -1) === 'Array') {
     //建堆
     var heapSize = array.length, temp;
     for (var i = Math.floor(heapSize / 2); i >= 0; i--) {
       heapify(array, i, heapSize);
     }
    
    //堆排序
    for (var j = heapSize - 1; j >= 1; j--) {
      temp = array[0];
      array[0] = array[j];
      array[j] = temp;
      heapify(array, 0, --heapSize);
    }
  } else {
    return 'array is not an Array!';
  }
}
/*方法说明:维护堆的性质
@param arr 数组
@param x  数组下标
@param len 堆大小*/
function heapify(arr, x, len) {
  if (Object.prototype.toString.call(arr).slice(8, -1) === 'Array' && typeof x === 'number') {
    var l = 2 * x, r = 2 * x + 1, largest = x, temp;
    if (l < len && arr[l] > arr[largest]) {
      largest = l;
    }
    if (r < len && arr[r] > arr[largest]) {
      largest = r;
    }
    if (largest != x) {
      temp = arr[x];
      arr[x] = arr[largest];
      arr[largest] = temp;
      heapify(arr, largest, len);
    }
  } else {
    return 'arr is not an Array or x is not a number!';
  }
}

Copy after login

3)算法分析

最佳情况:T(n) = O(nlogn)
最差情况:T(n) = O(nlogn)
平均情况:T(n) = O(nlogn)

七、归并排序

1)算法简介

  归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。归并排序是一种稳定的排序方法。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为2-路归并。

2)算法描述和实现

  具体算法描述如下:

把长度为n的输入序列分成两个长度为n/2的子序列;
对这两个子序列分别采用归并排序;
将两个排序好的子序列合并成一个最终的排序序列。
  JavaScript代码实现:

 function mergeSort(array, p, r) {
   if (p < r) {
     var q = Math.floor((p + r) / 2);
     mergeSort(array, p, q);
     mergeSort(array, q + 1, r);
     merge(array, p, q, r);
   }
 }
 function merge(array, p, q, r) {
  var n1 = q - p + 1, n2 = r - q, left = [], right = [], m = n = 0;
  for (var i = 0; i < n1; i++) {
    left[i] = array[p + i];
  }
  for (var j = 0; j < n2; j++) {
    right[j] = array[q + 1 + j];
  }
  left[n1] = right[n2] = Number.MAX_VALUE;
  for (var k = p; k <= r; k++) {
    if (left[m] <= right[n]) {
      array[k] = left[m];
      m++;
    } else {
      array[k] = right[n];
      n++;
    }
  }
}

Copy after login

3)算法分析

最佳情况:T(n) = O(n)
最差情况:T(n) = O(nlogn)
平均情况:T(n) = O(nlogn)

八、桶排序

1)算法简介

  桶排序 (Bucket sort)的工作的原理:假设输入数据服从均匀分布,将数据分到有限数量的桶里,每个桶再分别排序(有可能再使用别的排序算法或是以递归方式继续使用桶排序进行排序)。

2)算法描述和实现

  具体算法描述如下:

设置一个定量的数组当作空桶;
遍历输入数据,并且把数据一个一个放到对应的桶里去;
对每个不是空的桶进行排序;
从不是空的桶里把排好序的数据拼接起来。
  JavaScript代码实现:

 /*方法说明:桶排序
 @param array 数组
 @param num  桶的数量*/
 function bucketSort(array, num) {
   if (array.length <= 1) {
     return array;
   }
   var len = array.length, buckets = [], result = [], min = max = array[0], regex = '/^[1-9]+[0-9]*$/', space, n = 0;
   num = num || ((num > 1 && regex.test(num)) &#63; num : 10);
   for (var i = 1; i < len; i++) {
     min = min <= array[i] &#63; min : array[i];
     max = max >= array[i] &#63; max : array[i];
   }
   space = (max - min + 1) / num;
   for (var j = 0; j < len; j++) {
     var index = Math.floor((array[j] - min) / space);
     if (buckets[index]) {  // 非空桶,插入排序
       var k = buckets[index].length - 1;
       while (k >= 0 && buckets[index][k] > array[j]) {
         buckets[index][k + 1] = buckets[index][k];
         k--;
       }
       buckets[index][k + 1] = array[j];
     } else {  //空桶,初始化
       buckets[index] = [];
       buckets[index].push(array[j]);
     }
   }
   while (n < num) {
     result = result.concat(buckets[n]);
     n++;
   }
   return result;
 }



Copy after login

3)算法分析

  桶排序最好情况下使用线性时间O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为O(n)。很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

九、计数排序

1)算法简介

  计数排序(Counting sort)是一种稳定的排序算法。计数排序使用一个额外的数组C,其中第i个元素是待排序数组A中值等于i的元素的个数。然后根据数组C来将A中的元素排到正确的位置。它只能对整数进行排序。

2)算法描述和实现

  具体算法描述如下:

找出待排序的数组中最大和最小的元素;
统计数组中每个值为i的元素出现的次数,存入数组C的第i项;
对所有的计数累加(从C中的第一个元素开始,每一项和前一项相加);
反向填充目标数组:将每个元素i放在新数组的第C(i)项,每放一个元素就将C(i)减去1。
  JavaScript代码实现:

 function countingSort(array) {
   var len = array.length, B = [], C = [], min = max = array[0];
   for (var i = 0; i < len; i++) {
     min = min <= array[i] &#63; min : array[i];
     max = max >= array[i] &#63; max : array[i];
     C[array[i]] = C[array[i]] &#63; C[array[i]] + 1 : 1;
   }
   for (var j = min; j < max; j++) {
     C[j + 1] = (C[j + 1] || 0) + (C[j] || 0);
   }
   for (var k = len - 1; k >=0; k--) {
     B[C[array[k]] - 1] = array[k];
     C[array[k]]--;
   }
   return B;
 }

Copy after login

3)算法分析

  当输入的元素是n 个0到k之间的整数时,它的运行时间是 O(n + k)。计数排序不是比较排序,排序的速度快于任何比较排序算法。由于用来计数的数组C的长度取决于待排序数组中数据的范围(等于待排序数组的最大值与最小值的差加上1),这使得计数排序对于数据范围很大的数组,需要大量时间和内存。

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template