首页 > 科技周边 > 人工智能 > 探讨寻路算法及代码实现的线路规划解析

探讨寻路算法及代码实现的线路规划解析

WBOY
发布: 2023-12-20 11:39:40
转载
794 人浏览过

探讨寻路算法及代码实现的线路规划解析

寻路算法是计算机图形学和人工智能领域中常用的算法之一,用于计算从一个点到另一个点的最短路径或最优路径。在本文中,我将详细介绍两种常用的寻路算法:Dijkstra算法和A*算法

Dijkstra算法

Dijkstra算法是一种用于寻找图中两点之间最短路径的广度优先搜索算法。它的工作原理如下:

我们需要创建一个集合S来存放已经找到最短路径的顶点

我们需要创建一个集合Q,用来存放尚未找到最短路径的顶点

在初始化距离数组dist时,需要将起始点到其他点的距离设为无穷大,而起始点到自身的距离则设为0

不断重复以下步骤,直到集合Q为空:

  • 在集合Q中找到距离起始点最近的顶点u,并将其加入集合S。
  • 对于顶点u的每个邻居顶点v,更新起始点到v的距离dist[v],如果dist[v] > dist[u] + edge(u, v),则更新dist[v]为dist[u] + edge(u, v)。

最终,dist数组中储存的是从起始点到各个顶点的最短路径

以下是用C#编写的Dijkstra算法的源代码:

class DijkstraAlgorithm
{
    private int[,] graph;
    private int size;

    public DijkstraAlgorithm(int[,] graph)
    {
        this.graph = graph;
        this.size = graph.GetLength(0);
    }

    public int[] FindShortestPath(int start, int end)
    {
        int[] dist = new int[size];
        bool[] visited = new bool[size];

        for (int i = 0; i <h4><span>A算法</span></h4><p><span>A算法是一种启发式搜索算法,用于寻找图中两点之间的最短路径。算法的思路如下:</span></p><p><span>创建一个存放待探索顶点的优先队列openSet</span></p><p><span>我們需要創建一個名為 gScore 的數組,用於存儲從起始點到每個頂點的實際代價</span></p><p><span>我们需要创建一个名为fScore的数组,用于存储从起始点到达目标点的估计代价</span></p><p><span>将起始点加入openSet,并将gScore[start]设为0,fScore[start]设为起始点到目标点的估计代价</span></p><p><span>重复以下步骤,直到openSet为空:</span></p>
登录后复制
  • 在openSet中找到fScore最小的顶点current。
  • 如果current等于目标点,表示已经找到最短路径,返回路径。
  • 将current从openSet中移除。
  • 对于current的每个邻居顶点neighbor,计算从起始点到neighbor的实际代价tempGScore,如果tempGScore小于gScore[neighbor],更新gScore[neighbor]为tempGScore,并计算fScore[neighbor] = gScore[neighbor] + 估计代价。如果neighbor不在openSet中,将其加入openSet。

如果openSet为空,意味着无法到达目标点,返回空值

以下是用Java编写的A*算法的源代码:

import java.util.*;class AStarAlgorithm {private int[][] graph;private int size;public AStarAlgorithm(int[][] graph) {this.graph = graph;this.size = graph.length;}public List<integer> findShortestPath(int start, int end) {PriorityQueue<node> openSet = new PriorityQueue();int[] gScore = new int[size];int[] fScore = new int[size];int[] cameFrom = new int[size];boolean[] visited = new boolean[size];Arrays.fill(gScore, Integer.MAX_VALUE);Arrays.fill(fScore, Integer.MAX_VALUE);Arrays.fill(cameFrom, -1);gScore[start] = 0;fScore[start] = heuristicCostEstimate(start, end);openSet.offer(new Node(start, fScore[start]));while (!openSet.isEmpty()) {int current = openSet.poll().index;if (current == end) {return reconstructPath(cameFrom, current);}visited[current] = true;for (int neighbor = 0; neighbor  reconstructPath(int[] cameFrom, int current) {List<integer> path = new ArrayList();path.add(current);while (cameFrom[current] != -1) {current = cameFrom[current];path.add(0, current);}return path;}private class Node implements Comparable<node> {public int index;public int fScore;public Node(int index, int fScore) {this.index = index;this.fScore = fScore;}@Overridepublic int compareTo(Node other) {return Integer.compare(this.fScore, other.fScore);}@Overridepublic boolean equals(Object obj) {if (this == obj) {return true;}if (obj == null || getClass() != obj.getClass()) {return false;}Node other = (Node) obj;return index == other.index;}@Overridepublic int hashCode() {return Objects.hash(index);}}}</node></integer></node></integer>
登录后复制

以上是对Dijkstra算法和A*算法的详细介绍,包括算法思路、过程和使用C#或Java实现的源代码。这两种算法都是常用的寻路算法,可以根据具体需求选择使用。
当然在现在的城市里导航软件软件可以给我们规划好。

以上是探讨寻路算法及代码实现的线路规划解析的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:51cto.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板