這篇文章主要介紹了PHP實現的迪科斯徹(Dijkstra)最短路徑演算法,簡單描述了迪科斯徹(Dijkstra)最短路徑演算法的概念、功能並結合具體實例形式分析了php實現迪科斯徹(Dijkstra)最短路徑演算法的相關步驟與操作技巧,需要的朋友可以參考下
本文實例講述了PHP實現的迪科斯徹(Dijkstra)最短路徑演算法。分享給大家供大家參考,具體如下:
一、待解決問題
單源最短路徑問題,在給定有向圖中求一個頂點(單源頂點)到其他所有頂點的最短路徑問題。在下圖中,每條邊上有一個權值,希望求解A到所有其他頂點(B/C/D/E/F/G)的最短路徑。
二、問題分析(最短路徑的子結構同樣最優性)
如果P (A,G)是從頂點A到G的最短路徑,假設D和F是這條路徑上的中間點,那麼P(D,F)一定時從D到F的最短路徑。如果P(D,F)不是D到F的最短路徑,那必然存在某一個節點M的另一條D到F的路徑可以使P(A,B...M...F,G)比P (A,G)小,自相矛盾。
有了這樣的性質,我們可以了解Dijkstra演算法。
三、Dijkstra演算法
Dijkstra 演算法,又叫迪科斯徹演算法(Dijkstra),又稱為單源最短路徑演算法,所謂單源是在一個有向圖中,從一個頂點出發,求該頂點至所有可到達頂點的最短路徑問題。 問題描述為設G=(V,E)為有向圖,V表示頂點,E表示邊。它的每一邊(i,j)屬於E,都有一個非負權W(I,j),在G中指定一個結點v0,要求把從v0到G的每一個接vj(vj屬於V )的最短有向路徑找出來(或指出不存在)。 Dijstra演算法是運用貪心的策略,從源點開始,不斷地透過相聯通的點找出到其他點的最短距離。
Dijkstra的貪心應用在他利用(二)中的性質,不斷地選取“最近”的節點並試探每個節點的所有可能存在鏈接,以起始點為中心向外層層擴展,直到擴展到終點為止。對於源點A,逐步擴展,根據dist[j]=min{dist[j],dist[i]+matrix[i][j]}更新與i直接相鄰的頂點資訊。
演算法描述
1)演算法想法:
設G=(V,E)是帶權有向圖,把圖中頂點集合V分成兩組,第一組為已求出最短路徑的頂點集合(用S表示,初始時S中只有一個源點,以後每求得一條最短路徑, 就將加入到集合S中,直到全部頂點都加入S中,演算法就結束了),第二組為其餘未確定最短路徑的頂點集合(以U表示),以最短路徑長度的遞增次序依序把第二組的頂點加入S。在加入的過程中,總維持從源點v到S中各頂點的最短路徑長度不大於從源點v到U中任何頂點的最短路徑長度。此外,每個頂點對應一個距離,S中的頂點的距離就是從v到此頂點的最短路徑長度,U中的頂點的距離,是從v到此頂點只包括S中的頂點為中間頂點的當前最短路徑長度。
2)演算法步驟:
a.初始時,S只包含源點,即S={v},v的距離為0。 U包含除v外的其他頂點,即:U={其餘頂點},若v與U中頂點u有邊,則正常有權值,若u不是v的出邊鄰接點,則權值為∞。
b.從U選取一個距離v最小的頂點k,把k,加入S中(該選定的距離就是v到k的最短路徑長度)。
c.以k為新考慮的中間點,修改U中與k相鄰的各頂點的距離;若從源點v到頂點u的距離(經過頂點k)比原來距離(不經過頂點k)短,則修改頂點u的距離值,修改後的距離值為頂點k的距離加上k與u邊上的權。
d.重複步驟b和c直到所有頂點都包含在S中。
四、演算法PHP實作
<?php class Dijkstra { private $G; public function __construct() { //有向图存储 $this->G = array( array(0,1,2,0,0,0,0), array(0,0,0,1,2,0,0), array(0,0,0,0,0,2,0), array(0,0,0,0,0,1,3), array(0,0,0,0,0,0,3), array(0,0,0,0,0,0,1), array(0,0,0,0,0,0,0), ); } public function calculate() { // 存储已经选择节点和剩余节点 $U = array(0); $V = array(1,2,3,4,5,6); // 存储路径上节点距离源点的最小距离 $d = array(); //初始化图中节点与源点0的最小距离 for($i=1;$i<7;$i++) { if($this->G[0][$i]>0) { $d[$i] = $this->G[0][$i]; } else { $d[$i] = 1000000; } } // n-1次循环完成转移节点任务 for($l=0;$l<6;$l++) { // 查找剩余节点中距离源点最近的节点v $current_min = 100000; $current_min_v = 0; foreach($V as $k=>$v) { if($d[$v] < $current_min) { $current_min = $d[$v]; $current_min_v = $v; } } //从V中更新顶点到U中 array_push($U,$current_min_v); array_splice($V,array_search($current_min_v,$V),1); //更新 foreach($V as $k=>$u) { if($this->G[$current_min_v][$u]!=0&&$d[$u]>$d[$current_min_v]+$this->G[$current_min_v][$u]) { $d[$u] = $d[$current_min_v]+$this->G[$current_min_v][$u]; } } } foreach($d as $k => $u) { echo $k.'=>'.$u.'<br>'; } } } ?>
呼叫類別:
$D = new Dijkstra; $D->calculate();
執行結果:
1=>1 2=>2 3=>2 4=>3 5=>3 6=>4
以上是PHP實現的迪科斯徹最短路徑的詳細內容。更多資訊請關注PHP中文網其他相關文章!