今回のCF除了最終次都比较简单,
第一次用JAVA写CF....
Codeforces Round #269 (Div. 2)
A. MUH と Sticks
テストごとの制限時間
1 秒
テストごとのメモリ制限
256 メガバイト
入力標準入力
出力
標準出力
サンクトペテルブルク動物園の 2 頭のホッキョクグマ、メンシコフとウスラダ、そしてキエフ動物園のゾウ、ホラティウスは 6 本の棒を手に入れて遊んで、動物たちの創造性を評価しました。メンシコフ、ウスラダ、ホレスは、それらの棒から象か熊のどちらかを作ることにしました。次の方法で棒から動物を作ることができます:
4 本の棒は動物の足を表し、これらの棒は同じ長さでなければなりません。
入力
1 行には、スペースで区切られた 6 つの整数 li (1?≤?li?≤?9) が含まれています。 )? 6本の棒の長さ。棒から両方の動物を作成できないような入力であることが保証されています。
出力
指定されたセットからクマを作成できる場合は、文字列 "Bear" (引用符なし) を出力します。象を作ることができる場合は、文字列「Elephant」を (引用符なしで) 出力します。クマもゾウも作れない場合は、文字列「Alien」を出力します (引用符なし)。
入力
4 2 5 4 4 4
input
Bear
input
りー
出力
4 4 5 4 4 5
入力
Elephant
出力
1 2 3 4 5 6
注 創造的なアイデアが足りない場合は、以下の手順を参照してくださいクマとゾウの作り方を示しています。最初の 2 つのサンプル。長さ 2 の棒は赤、長さ 4 の棒は緑、長さ 5 の棒は青です。
B. MUH と重要なこと
入力
標準入力
出力
標準出力
Menshykov, Uslada and Horace ask you to deal with this nuisance and come up with individual plans for each of them. The plan is a sequence describing the order in which an animal should do all the n tasks. Besides, each of them wants to have its own unique plan. Therefore three plans must form three different sequences. You are to find the required plans, or otherwise deliver the sad news to them by stating that it is impossible to come up with three distinct plans for the given tasks.
Input
The first line contains integer n (1?≤?n?≤?2000) ? the number of tasks. The second line contains n integers h1,?h2,?...,?hn (1?≤?hi?≤?2000), where hi is the difficulty of the i-th task. The larger number hi is, the more difficult the i-th task is.
Output
In the first line print "YES" (without the quotes), if it is possible to come up with three distinct plans of doing the tasks. Otherwise print in the first line "NO" (without the quotes). If three desired plans do exist, print in the second line n distinct integers that represent the numbers of the tasks in the order they are done according to the first plan. In the third and fourth line print two remaining plans in the same form.
If there are multiple possible answers, you can print any of them.
Sample test(s)
input
41 3 3 1
output
YES1 4 2 3 4 1 2 3 4 1 3 2
input
52 4 1 4 8
output
NO
Note
In the first sample the difficulty of the tasks sets one limit: tasks 1 and 4 must be done before tasks 2 and 3. That gives the total of four possible sequences of doing tasks : [1, 4, 2, 3], [4, 1, 2, 3], [1, 4, 3, 2], [4, 1, 3, 2]. You can print any three of them in the answer.
In the second sample there are only two sequences of tasks that meet the conditions ? [3, 1, 2, 4, 5] and [3, 1, 4, 2, 5]. Consequently, it is impossible to make three distinct sequences of tasks.
简单题....
/** * Created by ckboss on 14-9-27. */import java.util.*;public class CF471B { static class Dui{ int num,id; } static class mycmp implements Comparator<Dui>{ public int compare(Dui a,Dui b){ return a.num-b.num; } } static int n; static int[] h = new int[2200]; static int[] used = new int[2200]; static Dui[] dui = new Dui[2200]; public static void main(String[] args){ Scanner in = new Scanner(System.in); n=in.nextInt(); int mx=-1; for(int i=1;i<=n;i++) { h[i]=in.nextInt(); dui[i] = new Dui(); dui[i].num=h[i]; dui[i].id=i; used[h[i]]++; mx=Math.max(mx,used[h[i]]); } Arrays.sort(dui,1,n+1,new mycmp()); if(mx>=3){ System.out.println("YES"); int sg=-1; for(int i=1;i<=n;i++){ if(used[h[i]]>=3){ sg=h[i]; break; } } int a=-1,b=-1,c=-1,nt=0; for(int i=1;i<=n;i++){ if(h[i]==sg){ if(nt==0) a=i; else if(nt==1) b=i; else if(nt==2) c=i; nt++; if(nt==3) break; } } for(int i=1;i<=n;i++){ System.out.print(dui[i].id+" "); } System.out.println(""); for(int i=1;i<=n;i++){ int t=dui[i].id; if(t==a) t=b; else if(t==b) t=a; System.out.print(t+" "); } System.out.println(""); for(int i=1;i<=n;i++){ int t=dui[i].id; if(t==c) t=b; else if(t==b) t=c; System.out.print(t+" "); } System.out.println(""); } else if(mx==2){ int x=-1,y=-1,nt=0; int p1=-1,p2=-1; int q1=-1,q2=-1; for(int i=1;i<=n;i++){ if(used[h[i]]==2){ if(nt==0) { x=h[i]; nt++; } else if(nt==1&&h[i]!=x) { y=h[i]; nt++; } if(nt==2) break; } } if(x==-1||y==-1){ System.out.println("NO"); return ; } System.out.println("YES"); for(int i=1;i<=n;i++){ if(h[i]==x){ if(p1==-1) p1=i; else if(p2==-1) p2=i; } if(h[i]==y){ if(q1==-1) q1=i; else if(q2==-1) q2=i; } } for(int i=1;i<=n;i++){ System.out.print(dui[i].id+" "); } System.out.println(""); for(int i=1;i<=n;i++){ int t=dui[i].id; if(t==p1) t=p2; else if(t==p2) t=p1; System.out.print(t+" "); } System.out.println(""); for(int i=1;i<=n;i++){ int t=dui[i].id; if(t==q1) t=q2; else if(t==q2) t=q1; System.out.print(t+" "); } } else{ System.out.println("NO"); return ; } }}
C. MUH and House of Cards
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
Polar bears Menshykov and Uslada from the zoo of St. Petersburg and elephant Horace from the zoo of Kiev decided to build a house of cards. For that they've already found a hefty deck of n playing cards. Let's describe the house they want to make:
Please note that the house may end by the floor with more than one room, and in this case they also must be covered by the ceiling. Also, the number of rooms on the adjoining floors doesn't have to differ by one, the difference may be more.
While bears are practicing to put cards, Horace tries to figure out how many floors their house should consist of. The height of the house is the number of floors in it. It is possible that you can make a lot of different houses of different heights out of n cards. It seems that the elephant cannot solve this problem and he asks you to count the number of the distinct heights of the houses that they can make using exactly n cards.
Input
The single line contains integer n (1?≤?n?≤?1012) ? the number of cards.
Output
Print the number of distinct heights that the houses made of exactly n cards can have.
Sample test(s)
input
13
output
input
output
Note
In the first sample you can build only these two houses (remember, you must use all the cards):
Thus, 13 cards are enough only for two floor houses, so the answer is 1.
The six cards in the second sample are not enough to build any house.
到10^12总共只要80W种可能的层数,鉴于CF的强大机器直接暴力....
/** * Created by ckboss on 14-9-27. */import java.util.*;public class CF471C { static long getA(long x){ return 2*(x+1)+3*(x+1)*x/2; } public static void main(String[] args){ Scanner in = new Scanner(System.in); long n = in.nextLong(); int ans=0; for(long i=0;;i++){ long t=getA(i); if(t<=n){ long res=n-t; if(res%3==0){ ans++; } } else break; } System.out.println(ans); }}
D. MUH and Cube Walls
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
Polar bears Menshykov and Uslada from the zoo of St. Petersburg and elephant Horace from the zoo of Kiev got hold of lots of wooden cubes somewhere. They started making cube towers by placing the cubes one on top of the other. They defined multiple towers standing in a line as a wall. A wall can consist of towers of different heights.
Horace was the first to finish making his wall. He called his wall an elephant. The wall consists of w towers. The bears also finished making their wall but they didn't give it a name. Their wall consists of n towers. Horace looked at the bears' tower and wondered: in how many parts of the wall can he "see an elephant"? He can "see an elephant" on a segment of w contiguous towers if the heights of the towers on the segment match as a sequence the heights of the towers in Horace's wall. In order to see as many elephants as possible, Horace can raise and lower his wall. He even can lower the wall below the ground level (see the pictures to the samples for clarification).
Your task is to count the number of segments where Horace can "see an elephant".
Input
The first line contains two integers n and w (1?≤?n,?w?≤?2·105) ? the number of towers in the bears' and the elephant's walls correspondingly. The second line contains n integers ai (1?≤?ai?≤?109) ? the heights of the towers in the bears' wall. The third line contains w integers bi (1?≤?bi?≤?109) ? the heights of the towers in the elephant's wall.
Output
Print the number of segments in the bears' wall where Horace can "see an elephant".
Sample test(s)
input
13 52 4 5 5 4 3 2 2 2 3 3 2 13 4 4 3 2
output
Note
The picture to the left shows Horace's wall from the sample, the picture to the right shows the bears' wall. The segments where Horace can "see an elephant" are in gray.
预处理出差值跑KMP.....
才发现我的KMP模版有一个小bug.....还用了这么多年......
/** * Created by ckboss on 14-9-27. */import java.util.*;import java.io.*;public class CF471D { static int n,m; static int[] hi = new int[200200]; static int[] wi = new int[200200]; static int[] h = new int[200200]; static int[] w = new int[200200]; static int[] f = new int[200200]; static void getfail(){ f[0]=f[1]=0; for(int i=1;i<m;i++){ int j=f[i]; while(j!=0&&w[j]!=w[i]) j=f[j]; f[i+1]=(w[i]==w[j])?j+1:0; } } static int kmp(){ int ans=0; getfail(); int j=0; for(int i=0;i<n;i++){ while(j!=0&&w[j]!=h[i]) j=f[j]; if(w[j]==h[i]) j++; if(j==m){ ans++; j=f[j]; } } return ans; } public static void main(String[] args){ Scanner in = new Scanner(System.in); n=in.nextInt(); m=in.nextInt(); for(int i=0;i<n;i++){ hi[i]=in.nextInt(); if(i-1>=0) h[i-1]=hi[i]-hi[i-1]; } for(int i=0;i<m;i++) { wi[i] = in.nextInt(); if(i-1>=0) w[i-1]=wi[i]-wi[i-1]; } m--;n--; if(m==0){ System.out.println(n+1); return ; } System.out.println(kmp()); }}