Comment utiliser Java pour implémenter l'algorithme d'arbre couvrant minimum
L'algorithme d'arbre couvrant minimum est un problème classique de la théorie des graphes, utilisé pour résoudre l'arbre couvrant minimum d'un graphe connecté pondéré. Cet article expliquera comment utiliser le langage Java pour implémenter cet algorithme et fournira des exemples de code spécifiques.
Ce qui suit est un exemple d'implémentation Java de l'algorithme de Prim :
import java.util.ArrayList; import java.util.List; import java.util.PriorityQueue; import java.util.Queue; class Edge implements Comparable<Edge> { int from; int to; int weight; public Edge(int from, int to, int weight) { this.from = from; this.to = to; this.weight = weight; } @Override public int compareTo(Edge other) { return Integer.compare(this.weight, other.weight); } } public class Prim { public static List<Edge> calculateMST(List<List<Edge>> graph) { int n = graph.size(); boolean[] visited = new boolean[n]; Queue<Edge> pq = new PriorityQueue<>(); // Start from vertex 0 int start = 0; visited[start] = true; for (Edge e : graph.get(start)) { pq.offer(e); } List<Edge> mst = new ArrayList<>(); while (!pq.isEmpty()) { Edge e = pq.poll(); int from = e.from; int to = e.to; int weight = e.weight; if (visited[to]) { continue; } visited[to] = true; mst.add(e); for (Edge next : graph.get(to)) { if (!visited[next.to]) { pq.offer(next); } } } return mst; } }
Ce qui suit est un exemple d'implémentation Java de l'algorithme Kruskal :
import java.util.ArrayList; import java.util.Collections; import java.util.List; class Edge implements Comparable<Edge> { int from; int to; int weight; public Edge(int from, int to, int weight) { this.from = from; this.to = to; this.weight = weight; } @Override public int compareTo(Edge other) { return Integer.compare(this.weight, other.weight); } } public class Kruskal { public static List<Edge> calculateMST(List<Edge> edges, int n) { List<Edge> mst = new ArrayList<>(); Collections.sort(edges); int[] parent = new int[n]; for (int i = 0; i < n; i++) { parent[i] = i; } for (Edge e : edges) { int from = e.from; int to = e.to; int weight = e.weight; int parentFrom = findParent(from, parent); int parentTo = findParent(to, parent); if (parentFrom != parentTo) { mst.add(e); parent[parentFrom] = parentTo; } } return mst; } private static int findParent(int x, int[] parent) { if (x != parent[x]) { parent[x] = findParent(parent[x], parent); } return parent[x]; } }
import java.util.ArrayList; import java.util.List; public class Main { public static void main(String[] args) { List<List<Edge>> graph = new ArrayList<>(); graph.add(new ArrayList<>()); graph.add(new ArrayList<>()); graph.add(new ArrayList<>()); graph.add(new ArrayList<>()); graph.get(0).add(new Edge(0, 1, 2)); graph.get(0).add(new Edge(0, 2, 3)); graph.get(1).add(new Edge(1, 0, 2)); graph.get(1).add(new Edge(1, 2, 1)); graph.get(1).add(new Edge(1, 3, 5)); graph.get(2).add(new Edge(2, 0, 3)); graph.get(2).add(new Edge(2, 1, 1)); graph.get(2).add(new Edge(2, 3, 4)); graph.get(3).add(new Edge(3, 1, 5)); graph.get(3).add(new Edge(3, 2, 4)); List<Edge> mst = Prim.calculateMST(graph); System.out.println("Prim算法得到的最小生成树:"); for (Edge e : mst) { System.out.println(e.from + " -> " + e.to + ",权重:" + e.weight); } List<Edge> edges = new ArrayList<>(); edges.add(new Edge(0, 1, 2)); edges.add(new Edge(0, 2, 3)); edges.add(new Edge(1, 2, 1)); edges.add(new Edge(1, 3, 5)); edges.add(new Edge(2, 3, 4)); mst = Kruskal.calculateMST(edges, 4); System.out.println("Kruskal算法得到的最小生成树:"); for (Edge e : mst) { System.out.println(e.from + " -> " + e.to + ",权重:" + e.weight); } } }
En exécutant l'exemple de programme ci-dessus, vous pouvez obtenir le résultat suivant :
Prim算法得到的最小生成树: 0 -> 1,权重:2 1 -> 2,权重:1 2 -> 3,权重:4 Kruskal算法得到的最小生成树: 1 -> 2,权重:1 0 -> 1,权重:2 2 -> 3,权重:4
Ce qui précède est l'utilisation d'exemples de code spécifiques pour implémenter l'algorithme d'arbre couvrant minimum en Java. Grâce à ces exemples de codes, les lecteurs peuvent mieux comprendre et apprendre le processus de mise en œuvre et les principes de l'algorithme d'arbre couvrant minimum. J'espère que cet article sera utile aux lecteurs.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!