The cubic function defined as fx ax³ bx² cx d a=0

王林
Release: 2024-01-20 08:00:06
forward
1021 people have browsed it

对于三次函数fx ax3 bx2 cx da 0给出定义:设f x是函数y

For the cubic function fx ax3 bx2 cx da 0, the definition is given: Let f x be the function y fx

∵f(x)=ax3 bx2 cx d(a≠0),

∴f′(x)=3ax2 2bx c,f''(x)=6ax 2b,

∵f″(x)=6a*(-

b

3a ) 2b=0,

∴Any cubic function is about the point (-

b

3a ,f(-

b

3a )) Symmetry, that is, ① is correct;

∵Any cubic function has a symmetry center, and the "inflection point" is the symmetry center,

∴There is a cubic function f′(x)=0 with a real solution x0, and the point (x0, f(x0)) is the symmetry center of y=f(x), that is, ② is correct;

Any cubic function has one and only one center of symmetry, so ③ is incorrect;

∵g′(x)=x2-x,g″(x)=2x-1,

Let g″(x)=0, we can get x=

1

2, ∴g(

1

2 )=-

1

2 ,

∴g(x)=

1

3 x3-

1

2 x2-

5

The center of symmetry of

12 is (

1

2 ,-

1

2 ),

∴g(x) g(1-x)=-1,

∴g(

1

2013 ) g(

2

2013 ) … g(

2012

2013 )=-1*1006=-1006, so ④ is correct.

So the answer is: ①②④.

For the cubic function fx ax 3 bx 2 cx da 0, the definition is given: Let f x be the function fx

①From f(x)=2x 3 -3x 2 -24x 12, we get f ′ =6x 2 -6x-24,f ′′ (x)=12x-6.

From f ′′ (x)=12x-6=0, we get x=

1

2 . f(

1

2 )=2*(

1

2 ) 3 -3*(

1

2 ) 2 -24*

1

2 12=-

1

2 .

So the symmetry center coordinate of the function f(x)=2x 3 -3x 2 -24x 12 is (

1

2 ,-

1

2 ) .

So the answer is (

1

2 ,-

1

2 ) .

②Because the symmetry center coordinate of the function f(x)=2x 3 -3x 2 -24x 12 is (

1

2 ,-

1

2 ) .

So f(

1

2013 ) f(

2012

2013 )=f(

2

2013 ) f(

2011

2013 )=…=2f(

1

2 )=2*(-

1

2 ) =-1.

by f(

2013

2013 )=f(1)=-13 .

So f(

1

2013 ) f(

2

2013 ) f(

3

2013 ) … f(

2012

2013 ) f(

2013

2013 ) =-1006-13=-1019.

So the answer is -1019.

The above is the detailed content of The cubic function defined as fx ax³ bx² cx d a=0. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:docexcel.net
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!