Detailed explanation of the implementation method of iterative method of nonlinear equations in matlab

WBOY
Release: 2024-01-08 16:06:35
forward
736 people have browsed it

Detailed description of matlab implementation of nonlinear equation system iteration method

Newton iteration method:

function[x0,n]=newton(fx,dfx,x0,tol,N)

% Newton iteration method

% The first parameter fx is the desired function expression about variable x.

% The second parameter dfx is the first derivative of fx.

% x0 is the initial value of iteration.

% tol is the iteration error limit.

% N Maximum number of iterations.

x=x0;f0=eval(fx);df0=eval(dfx);

n=0;

disp('[ n xn xn 1 delta ]');

while n

x1=x0-f0/df0;

x=x1;f1=eval(fx);df1=eval(dfx);

delta=abs(x0-x1);

% X=[n,x0,x1,delta];

disp(X); % is used to display intermediate results

if delta

fprintf('Iterative calculation successful')

return

else

n=n 1;

x0=x1;f0=f1;df0=df1;

end

end

if n==N 1

fprintf('Iteration calculation failed')

end

The other two can be modified slightly on this basis.

MATLAB program to use Newton iteration to solve nonlinear equations

Give you a complete version:

% Newton’s method for solving nonlinear equations

function main()

clc; clear all;

f = @(x)log(x sin(x)); % test function

df = @(x)(1 cos(x))/(x sin(x)); % derivative function

x0 = 0.1; % iteration initial value

x = TestNewton(f, df, x0) % Newton’s method solution

function x = TestNewton(fname, dfname, x0, e, N)

% Purpose: Newton iteration method to solve nonlinear equation f(x)=0

% fname and dfname respectively represent the M function handle or embedded function expression of f(x) and its derivative function

% x0 is the iteration initial value, e is the accuracy (default value 1e-7)

% x returns a numerical solution and displays the calculation process. Set the upper limit of the number of iterations N to prevent divergence (default 500 times)

% Input parameters

if nargin

N = 500;

end

if nargin

e = 1e-7;

end

x = x0; % initial value

x0 = x 2*e; % float

k = 0; % number of steps

fprintf('x[%d]= .9f\n', k, x) % print information

while abs(x0-x)>e & k

k = k 1; % record the number of steps

x0 = x; % update x(k)

x = x0 - feval(fname,x0)/feval(dfname,x0); % update x(k 1)

fprintf('x[%d]= .9f\n', k, x) % print information

end

if k == N

fprintf('The maximum number of iterations has been reached'); % End of iteration

end

result:

Detailed explanation of the implementation method of iterative method of nonlinear equations in matlab

The above is the detailed content of Detailed explanation of the implementation method of iterative method of nonlinear equations in matlab. For more information, please follow other related articles on the PHP Chinese website!

source:docexcel.net
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!