The premise of the question is that there must be such two numbers
I won’t write down the solution one... You can’t think of it usually
At first, I thought of using a hash table at the end of solution two
(Actually, I thought of creating a hash table as big as the target Array... If it exists, write it into the index, but if you want to find them all, you have to have a two-dimensional array. But then I thought if the target is very large, it will be a waste of space... So I changed it to Dict)
I later found out the problem Just ask for two numbers - -
Expansion questions are more interesting
It shouldn’t be difficult to find three. The others are not clear yet. If you want to add more...
1. Two-dimensional array
def find_pair(A, target): B = [[] for i in range(target + 1)] for i in range(0, len(A)): if A[i] <= target: B[A[i]].append(i) for i in range(0, target / 2 + 1): if len(B[i]) != 0 and len(B[target - i]) != 0: print(i, B[i], target-i, B[target-i]) if __name__ == "__main__": A = [0, 1, 1, 2, 11, 8, 3, 4, 5, 6, 7, 8, 9, 10] find_pair(A, 9)
2. Dictionary
def find_pair(A, target): B = {} for i in range(0, len(A)): if A[i] <= target: if not B.has_key(A[i]): B[A[i]] = [i] else: B[A[i]].append(i) for i in range(0, target / 2 + 1): if B.has_key(i) and B.has_key(target-i): print(i, B[i], target-i, B[target-i]) if __name__ == "__main__": A = [0, 1, 1, 2, 11, 8, 3, 4, 5, 6, 7, 8, 9, 10] find_pair(A, 9)
3. This method has been reordered. I don’t know what the meaning of returning the index in the book is... I’m lazy and just use the built-in one...
def find_pair(A, target): A.sort() i, j = 0, len(A) - 1 while i < j: s = A[i] + A[j] if s == target: print(i, A[i], j, A[j]) i += 1 j -= 1 elif s < target: i += 1 else: j -= 1 if __name__ == "__main__": A = [0, 1, 1, 2, 11, 8, 3, 4, 5, 6, 7, 8, 9, 10] find_pair(A, 9)