Multiplying large decimal numbers can be computationally challenging, especially when dealing with numbers that have many digits or multiple decimal places. Traditional multiplication methods become inefficient for extremely large numbers. This is where the Fast Fourier Transform (FFT) comes to the rescue, providing a powerful and efficient algorithm for multiplying large numbers with remarkable speed.
Traditional multiplication methods have a time complexity of O(n²), where n is the number of digits. For very large numbers, this becomes computationally expensive. The FFT-based multiplication algorithm reduces this complexity to O(n log n), making it significantly faster for large numbers.
Decomposition of the Discrete Fourier Transform (DFT):
Recursive Structure:
Butterfly Operations:
Bit-Reversal Permutation:
Time Complexity:
The FFT multiplication algorithm works through several key steps:
Preprocessing the Numbers
Fast Fourier Transform
Frequency Domain Multiplication
Inverse FFT and Result Processing
class Complex { constructor(re = 0, im = 0) { this.re = re; // Real part this.im = im; // Imaginary part } // Static methods for complex number operations static add(a, b) { /* ... */ } static subtract(a, b) { /* ... */ } static multiply(a, b) { /* ... */ } }
The Complex class is crucial for performing FFT operations, allowing us to manipulate numbers in both real and imaginary domains.
function fft(a, invert = false) { // Bit reversal preprocessing // Butterfly operations in frequency domain // Optional inverse transformation }
The FFT function is the core of the algorithm, transforming numbers between time and frequency domains efficiently.
The implementation includes sophisticated logic for handling decimal numbers:
// Multiplying large integers fftMultiply("12345678901234567890", "98765432109876543210") // Multiplying very large different size integers fftMultiply("12345678901234567890786238746872364872364987293795843790587345", "9876543210987654321087634875782369487239874023894") // Multiplying decimal numbers fftMultiply("123.456", "987.654") // Handling different decimal places fftMultiply("1.23", "45.6789") // Handling different decimal places with large numbers fftMultiply("1234567890123456789078623874687236487236498.7293795843790587345", "98765432109876543210876348757823694.87239874023894")
The FFT multiplication algorithm represents a powerful approach to multiplying large numbers efficiently. By leveraging frequency domain transformations, we can perform complex mathematical operations with remarkable speed and precision.
The complete implementation is following, providing a robust solution for multiplying large decimal numbers using the Fast Fourier Transform approach.
/** * Fast Fourier Transform (FFT) implementation for decimal multiplication * @param {number[]} a - Input array of real numbers * @param {boolean} invert - Whether to perform inverse FFT * @returns {Complex[]} - Transformed array of complex numbers */ class Complex { constructor(re = 0, im = 0) { this.re = re; this.im = im; } static add(a, b) { return new Complex(a.re + b.re, a.im + b.im); } static subtract(a, b) { return new Complex(a.re - b.re, a.im - b.im); } static multiply(a, b) { return new Complex(a.re * b.re - a.im * b.im, a.re * b.im + a.im * b.re); } } function fft(a, invert = false) { let n = 1; while (n < a.length) n <<= 1; a = a.slice(0); a.length = n; const angle = ((2 * Math.PI) / n) * (invert ? -1 : 1); const roots = new Array(n); for (let i = 0; i < n; i++) { roots[i] = new Complex(Math.cos(angle * i), Math.sin(angle * i)); } // Bit reversal for (let i = 1, j = 0; i < n; i++) { let bit = n >> 1; for (; j & bit; bit >>= 1) { j ^= bit; } j ^= bit; if (i < j) { [a[i], a[j]] = [a[j], a[i]]; } } // Butterfly operations for (let len = 2; len <= n; len <<= 1) { const halfLen = len >> 1; for (let i = 0; i < n; i += len) { for (let j = 0; j < halfLen; j++) { const u = a[i + j]; const v = Complex.multiply(a[i + j + halfLen], roots[(n / len) * j]); a[i + j] = Complex.add(u, v); a[i + j + halfLen] = Complex.subtract(u, v); } } } if (invert) { for (let i = 0; i < n; i++) { a[i].re /= n; a[i].im /= n; } } return a; } /** * Multiply two decimal numbers using FFT * @param {string} num1 - First number as a string * @param {string} num2 - Second number as a string * @returns {string} - Product of the two numbers */ function fftMultiply(num1, num2) { // Handle zero cases if (num1 === "0" || num2 === "0") return "0"; // Parse and separate integer and decimal parts const parseNumber = (numStr) => { const [intPart, decPart] = numStr.split("."); return { intPart: intPart || "0", decPart: decPart || "", totalDecimalPlaces: (decPart || "").length, }; }; const parsed1 = parseNumber(num1); const parsed2 = parseNumber(num2); // Combine numbers removing decimal point const combinedNum1 = parsed1.intPart + parsed1.decPart; const combinedNum2 = parsed2.intPart + parsed2.decPart; // Total decimal places const totalDecimalPlaces = parsed1.totalDecimalPlaces + parsed2.totalDecimalPlaces; // Convert to digit arrays (least significant first) const a = combinedNum1.split("").map(Number).reverse(); const b = combinedNum2.split("").map(Number).reverse(); // Determine result size and pad const resultSize = a.length + b.length; const fftSize = 1 << Math.ceil(Math.log2(resultSize)); // Pad input arrays while (a.length < fftSize) a.push(0); while (b.length < fftSize) b.push(0); // Convert to complex arrays const complexA = a.map((x) => new Complex(x, 0)); const complexB = b.map((x) => new Complex(x, 0)); // Perform FFT const fftA = fft(complexA); const fftB = fft(complexB); // Pointwise multiplication in frequency domain const fftProduct = new Array(fftSize); for (let i = 0; i < fftSize; i++) { fftProduct[i] = Complex.multiply(fftA[i], fftB[i]); } // Inverse FFT const product = fft(fftProduct, true); // Convert back to integer representation const result = new Array(resultSize).fill(0); for (let i = 0; i < resultSize; i++) { result[i] = Math.round(product[i].re); } // Handle carries for (let i = 0; i < result.length - 1; i++) { if (result[i] >= 10) { result[i + 1] += Math.floor(result[i] / 10); result[i] %= 10; } } // Remove leading zeros and convert to string while (result.length > 1 && result[result.length - 1] === 0) { result.pop(); } // Insert decimal point const resultStr = result.reverse().join(""); if (totalDecimalPlaces === 0) { return resultStr; } // Handle case where result might be shorter than decimal places if (resultStr.length <= totalDecimalPlaces) { return "0." + "0".repeat(totalDecimalPlaces - resultStr.length) + resultStr; } // Insert decimal point return ( resultStr.slice(0, -totalDecimalPlaces) + "." + resultStr.slice(-totalDecimalPlaces).replace(/0+$/, "") ); }
// Example Usage - Self verify using Python console.log( "Product of integers:", fftMultiply("12345678901234567890", "98765432109876543210") ); console.log("Product of decimals:", fftMultiply("123.456", "987.654")); console.log("Product of mixed decimals:", fftMultiply("12.34", "56.78")); console.log( "Product with different decimal places:", fftMultiply("1.23", "45.6789") ); console.log( "Product with large integers:", fftMultiply( "12345678901234567890786238746872364872364987293795843790587345", "9876543210987654321087634875782369487239874023894" ) ); const num1 = "1234567890123456789078623874687236487236498.7293795843790587345"; const num2 = "98765432109876543210876348757823694.87239874023894"; console.log("Product:", fftMultiply(num1, num2));
Product of integers: 1219326311370217952237463801111263526900 Product of decimals: 121931.812224 Product of mixed decimals: 700.6652 Product with different decimal places: 56.185047 Product with large integers: 121932631137021795232593613105722759976860134207381319681901040774443113318245930967231822167723255326824021430 Product: 121932631137021795232593613105722759976860134207381319681901040774443113318245.93096723182216772325532682402143
The above is the detailed content of Multiplying Large Decimal Numbers Using Fast Fourier Transform (FFT). For more information, please follow other related articles on the PHP Chinese website!