Home > Backend Development > C++ > How to Efficiently Calculate N! Using a Fixed-Point Bignumber Library?

How to Efficiently Calculate N! Using a Fixed-Point Bignumber Library?

Barbara Streisand
Release: 2024-12-06 07:08:10
Original
588 people have browsed it

How to Efficiently Calculate N! Using a Fixed-Point Bignumber Library?

Problem:

Determine an efficient method to calculate N! (N factorial) with no precision loss using a fixed-point bignumber library. Specifically, find the formula for:

T2 = { (2N+1).(2N+3).(2N+5)...(4N-1) }.(2^N)/(N!)
Copy after login

Solution:

  1. Compute T1:

    T1 = T2 * N!
    Copy after login

    where N! is determined using the following formula:

    N! = ((2N)!).((2N)!).{ (2N+1).(2N+3).(2N+5)...(4N-1) }
    Copy after login

    This allows for the computation of N! from T1.

  2. Calculate the exponent e for prime i:

    e = sum(j=1,2,3,4,5,...) of (4N/(i^j))-(2N/(i^j)) )
    Copy after login

    where i is any prime <= 4N
    and j is any integer such that i^j <= 4N

  3. Compute T2:

    T2 = multiplication(i=all primes<=4N) of [i^e]
    Copy after login

    where e is the exponent calculated in Step 2.

Code Snippet for New Equation:

// edit beg:
// Sorry, forget to copy sorted list of all primes up to max n here it is
// end of table is marked with 0
// Primes are in DWORDs so they only 4Byte per number
// so the table is very small compared with lookup table for the same max n!
// and also primes are needed for many other routines in bignum
// can compute n! for n <= max prime in table
DWORD _arithmetics_primes[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,0};
// edit end.

longnum fact(const DWORD &x)
    {
    if (x<=4)
        {
        if (x==4) return 24;
        if (x==3) return  6;
        if (x==2) return  2;
        if (x==1) return  1;
        if (x==0) return  1;
        }
    int N4,N2,p,i,j,e; longnum c,pp;
    N4=(x>>2)<<2;
    N2=N4>>1;
    c=fact(N2); c*=c;                 // c=((2N)!)^2;
    for (i=0;;i++)                    // c*= T2
        {
        p=_arithmetics_primes[i];
        if (!p) break;
        if (p>N4) break;
        for (e=0,j=N4;j;e+=j&1,j/=p);
        if (e)                        // c*=p^e
            {
            if (p==2) c<<=e;
            else for (pp=p;;)
                {
                if (int(e&1)) c*=pp;
                e>>=1; if (!e) break;
                pp*=pp;
                }
            }
        }
    for (i=N4+1;i<=x;i++) { c*=i; } c.round();
    return c;
    }

Time Measurements:

N! Time (ms)
1! 0.001
2! 0.000
3! 0.000
4! 0.006
5! 0.006
6! 0.007
7! 0.005
8! 0.006
9! 0.007
10! 0.008
11! 0.012
12! 0.013
13! 0.014
14! 0.016
15! 0.014
16! 0.015
17! 0.017
18! 0.019
19! 0.016
20! 0.017
21! 0.019
22! 0.021
23! 0.023
24! 0.025
25! 0.027
26! 0.029
27! 0.032
28! 0.034
29! 0.037
30! 0.039
31! 0.034
32! 0.037
33! 0.039
34! 0.041
35! 0.039
36! 0.041
37! 0.044
38! 0.046
39! 0.041
40! 0.044
41! 0.046
42! 0.049
43! 0.048
44! 0.050
45! 0.054
46! 0.056
47! 0.056
48! 0.060
49! 0.063
50! 0.066
51! 0.065
52! 0.069
53! 0.072
54! 0.076
55! 0.077
56! 0.162
57! 0.095
58! 0.093
59! 0.089
60! 0.093
61! 0.098
62! 0.096
63! 0.090
64! 0.100
65! 0.104
66! 0.111
67! 0.100
68! 0.121
69! 0.109
70! 0.119
71! 0.104
72! 0.124
73! 0.113
74! 0.118
75! 0.118
76! 0.123
77! 0.129
78! 0.133
79

The above is the detailed content of How to Efficiently Calculate N! Using a Fixed-Point Bignumber Library?. For more information, please follow other related articles on the PHP Chinese website!

source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Latest Articles by Author
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template