Problem:
Determine an efficient method to calculate N! (N factorial) with no precision loss using a fixed-point bignumber library. Specifically, find the formula for:
T2 = { (2N+1).(2N+3).(2N+5)...(4N-1) }.(2^N)/(N!)
Solution:
Compute T1:
T1 = T2 * N!
where N! is determined using the following formula:
N! = ((2N)!).((2N)!).{ (2N+1).(2N+3).(2N+5)...(4N-1) }
This allows for the computation of N! from T1.
Calculate the exponent e for prime i:
e = sum(j=1,2,3,4,5,...) of (4N/(i^j))-(2N/(i^j)) )
where i is any prime <= 4N
and j is any integer such that i^j <= 4N
Compute T2:
T2 = multiplication(i=all primes<=4N) of [i^e]
where e is the exponent calculated in Step 2.
Code Snippet for New Equation:
// edit beg: // Sorry, forget to copy sorted list of all primes up to max n here it is // end of table is marked with 0 // Primes are in DWORDs so they only 4Byte per number // so the table is very small compared with lookup table for the same max n! // and also primes are needed for many other routines in bignum // can compute n! for n <= max prime in table DWORD _arithmetics_primes[]={2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,0}; // edit end. longnum fact(const DWORD &x) { if (x<=4) { if (x==4) return 24; if (x==3) return 6; if (x==2) return 2; if (x==1) return 1; if (x==0) return 1; } int N4,N2,p,i,j,e; longnum c,pp; N4=(x>>2)<<2; N2=N4>>1; c=fact(N2); c*=c; // c=((2N)!)^2; for (i=0;;i++) // c*= T2 { p=_arithmetics_primes[i]; if (!p) break; if (p>N4) break; for (e=0,j=N4;j;e+=j&1,j/=p); if (e) // c*=p^e { if (p==2) c<<=e; else for (pp=p;;) { if (int(e&1)) c*=pp; e>>=1; if (!e) break; pp*=pp; } } } for (i=N4+1;i<=x;i++) { c*=i; } c.round(); return c; }Time Measurements:
N! | Time (ms) |
---|---|
1! | 0.001 |
2! | 0.000 |
3! | 0.000 |
4! | 0.006 |
5! | 0.006 |
6! | 0.007 |
7! | 0.005 |
8! | 0.006 |
9! | 0.007 |
10! | 0.008 |
11! | 0.012 |
12! | 0.013 |
13! | 0.014 |
14! | 0.016 |
15! | 0.014 |
16! | 0.015 |
17! | 0.017 |
18! | 0.019 |
19! | 0.016 |
20! | 0.017 |
21! | 0.019 |
22! | 0.021 |
23! | 0.023 |
24! | 0.025 |
25! | 0.027 |
26! | 0.029 |
27! | 0.032 |
28! | 0.034 |
29! | 0.037 |
30! | 0.039 |
31! | 0.034 |
32! | 0.037 |
33! | 0.039 |
34! | 0.041 |
35! | 0.039 |
36! | 0.041 |
37! | 0.044 |
38! | 0.046 |
39! | 0.041 |
40! | 0.044 |
41! | 0.046 |
42! | 0.049 |
43! | 0.048 |
44! | 0.050 |
45! | 0.054 |
46! | 0.056 |
47! | 0.056 |
48! | 0.060 |
49! | 0.063 |
50! | 0.066 |
51! | 0.065 |
52! | 0.069 |
53! | 0.072 |
54! | 0.076 |
55! | 0.077 |
56! | 0.162 |
57! | 0.095 |
58! | 0.093 |
59! | 0.089 |
60! | 0.093 |
61! | 0.098 |
62! | 0.096 |
63! | 0.090 |
64! | 0.100 |
65! | 0.104 |
66! | 0.111 |
67! | 0.100 |
68! | 0.121 |
69! | 0.109 |
70! | 0.119 |
71! | 0.104 |
72! | 0.124 |
73! | 0.113 |
74! | 0.118 |
75! | 0.118 |
76! | 0.123 |
77! | 0.129 |
78! | 0.133 |
79 |
The above is the detailed content of How to Efficiently Calculate N! Using a Fixed-Point Bignumber Library?. For more information, please follow other related articles on the PHP Chinese website!