首页 > 后端开发 > C++ > 在二维平面上,从原点到达点(d, 0)所需的跳跃次数

在二维平面上,从原点到达点(d, 0)所需的跳跃次数

王林
发布: 2023-09-05 22:41:06
转载
1337 人浏览过

在二维平面上,从原点到达点(d, 0)所需的跳跃次数

在本文中,我们将讨论一个令人兴奋的分析问题的可能解决方案,即在指定了固定跳跃长度的 2D 平面中,从原点到达点 (d, 0) 需要多少次跳跃。我们将使用固定的跳跃长度和目标坐标来找到所需的最小跳跃次数。

输入输出场景

假设跳跃长度可以是a或b,目标点是(d,0)。然后,给定的输出是到达目标所需的最小跳跃次数。

Input: a = 7, b = 5, d = 9
Output: 2
Input: a = 7, b = 5, d = 5
Output: 1
Input: a = 7, b = 5, d = 24
Output: 4
登录后复制

假设您站在 2D 平面的原点 (0, 0)。您的目标坐标为 (d, 0)。到达目标坐标的唯一方法是进行固定长度的跳跃。您的目标是找到一种有效的方法,以最少的跳跃次数达到目标。

使用 If 语句

我们将使用 if 语句来查找到达 (d, 0) 所需的最少跳转次数。

  • 首先,我们需要保证a总是大于b,这样a代表更长的跳跃长度,而b b>表示较短的跳跃长度。因此,如果b > a,,那么我们将ab中的最大值分配给a

  • 接下来,我们检查d是否大于或等于a。如果满足这个条件,那么我们可以简单地用(d + a - 1) / a计算出最小跳跃次数。这里,(d + a - 1) 表示跳跃长度为“a”的总距离除以a (即每次跳跃长度)给出跳跃次数。

  • 如果d = 0,则不需要跳转。

  • 如果 d = b,那么我们跳一跳b长度就可以直接到达该点。

  • 如果 d > bd < a< a,则最小跳跃次数为 2。这是因为如果我们取一个三角形 XYZ,使得 X 为原点,Z 是目标点,Y 是满足 XY = YZ = max(a, b) 的点。 那么,最小跳跃将为 2,即从 X Y Y Z

示例

#include <iostream>
using namespace std;

int minJumps(int a, int b, int d) {
   // Check if b > a, then interchange the values of a and b
   if (b > a) {
      int cont = a;
      a = b;
      b = cont;
   }
    
   // When d >= a
   if (d >= a)
      return (d + a - 1) / a;

   // When the target point is 0
   if (d == 0)
      return 0;

   // When d is equal to b.
   if (d == b)
      return 1;
     
   // When distance to be covered is not equal to b.    
   return 2;  
    
}

int main() {
   int a = 3, b = 5, d = 9;
   int result = minJumps(a, b, d);
   cout << "Minimum number of jumps required to reach (d, 0) from (0, 0) is: " << result << endl;
   return 0;
}
登录后复制

输出

Minimum number of jumps required to reach (d, 0) from (0, 0) is: 2
登录后复制

使用除法和模运算符

如果ab的值为0,那么我们可以简单地使用除法和取模运算符来找到最小数量跳跃。这里,我们将距离 d 除以跳跃长度(因为其中一个跳跃长度为 0)来得到跳跃次数。

示例

#include <iostream>
using namespace std;

int minJumps(int d, int jumpLength) {
   // To find number of complete jumps
   int numJumps = d / jumpLength;
   // If distance is not divisible by jump length
   if (d % jumpLength != 0) {
      numJumps++;  
   }
   return numJumps;
}
int main() {
   int d = 24, jumpLength = 4;
   int result = minJumps(d, jumpLength);
   cout << "Minimum number of jumps required to reach (d, 0) from (0, 0) is: " << result << endl;
   return 0;
}
登录后复制

输出

Minimum number of jumps required to reach (d, 0) from (0, 0) is: 6
登录后复制

注意 - 我们还可以使用三元运算符来以简洁的方式编写代码。

int minJumps(int d, int jumpLength) {
   int numJumps = (d % jumpLength == 0) ? (d / jumpLength) : (d / jumpLength) + 1;
   return numJumps;
}
登录后复制

结论

我们讨论了如何找到从 2D 平面中的原点到达目标点 (d, 0) 所需的最小跳跃次数。我们使用 if 语句来查找 a b 非零值的跳转次数(a b b>是跳跃长度)。如果ab为零,那么我们可以使用除法和模运算符。为了简洁地编写代码,我们可以使用三元运算符。

以上是在二维平面上,从原点到达点(d, 0)所需的跳跃次数的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:tutorialspoint.com
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板