将大十进制数相乘可能在计算上具有挑战性,尤其是在处理具有许多位数或多个小数位的数字时。传统的乘法方法对于极大的数字来说效率很低。这就是快速傅里叶变换 (FFT) 发挥作用的地方,它提供了一种强大而高效的算法,可以以惊人的速度进行大数相乘。
传统乘法方法的时间复杂度为 O(n²),其中 n 是位数。对于非常大的数字,这在计算上变得昂贵。基于 FFT 的乘法算法将这种复杂性降低到 O(n log n),使得处理大数的速度显着加快。
离散傅立叶变换 (DFT) 的分解:
递归结构:
蝴蝶操作:
位反转排列:
时间复杂度:
FFT 乘法算法的工作原理有几个关键步骤:
预处理数字
快速傅立叶变换
频域乘法
逆FFT和结果处理
class Complex { constructor(re = 0, im = 0) { this.re = re; // Real part this.im = im; // Imaginary part } // Static methods for complex number operations static add(a, b) { /* ... */ } static subtract(a, b) { /* ... */ } static multiply(a, b) { /* ... */ } }
Complex 类对于执行 FFT 运算至关重要,它使我们能够操作实域和虚域中的数字。
function fft(a, invert = false) { // Bit reversal preprocessing // Butterfly operations in frequency domain // Optional inverse transformation }
FFT函数是算法的核心,有效地在时域和频域之间进行数字转换。
该实现包括处理十进制数的复杂逻辑:
// Multiplying large integers fftMultiply("12345678901234567890", "98765432109876543210") // Multiplying very large different size integers fftMultiply("12345678901234567890786238746872364872364987293795843790587345", "9876543210987654321087634875782369487239874023894") // Multiplying decimal numbers fftMultiply("123.456", "987.654") // Handling different decimal places fftMultiply("1.23", "45.6789") // Handling different decimal places with large numbers fftMultiply("1234567890123456789078623874687236487236498.7293795843790587345", "98765432109876543210876348757823694.87239874023894")
FFT 乘法算法代表了一种有效地乘以大数的强大方法。通过利用频域变换,我们可以以惊人的速度和精度执行复杂的数学运算。
完整的实现如下,为使用快速傅里叶变换方法乘以大十进制数提供了一个强大的解决方案。
/** * Fast Fourier Transform (FFT) implementation for decimal multiplication * @param {number[]} a - Input array of real numbers * @param {boolean} invert - Whether to perform inverse FFT * @returns {Complex[]} - Transformed array of complex numbers */ class Complex { constructor(re = 0, im = 0) { this.re = re; this.im = im; } static add(a, b) { return new Complex(a.re + b.re, a.im + b.im); } static subtract(a, b) { return new Complex(a.re - b.re, a.im - b.im); } static multiply(a, b) { return new Complex(a.re * b.re - a.im * b.im, a.re * b.im + a.im * b.re); } } function fft(a, invert = false) { let n = 1; while (n < a.length) n <<= 1; a = a.slice(0); a.length = n; const angle = ((2 * Math.PI) / n) * (invert ? -1 : 1); const roots = new Array(n); for (let i = 0; i < n; i++) { roots[i] = new Complex(Math.cos(angle * i), Math.sin(angle * i)); } // Bit reversal for (let i = 1, j = 0; i < n; i++) { let bit = n >> 1; for (; j & bit; bit >>= 1) { j ^= bit; } j ^= bit; if (i < j) { [a[i], a[j]] = [a[j], a[i]]; } } // Butterfly operations for (let len = 2; len <= n; len <<= 1) { const halfLen = len >> 1; for (let i = 0; i < n; i += len) { for (let j = 0; j < halfLen; j++) { const u = a[i + j]; const v = Complex.multiply(a[i + j + halfLen], roots[(n / len) * j]); a[i + j] = Complex.add(u, v); a[i + j + halfLen] = Complex.subtract(u, v); } } } if (invert) { for (let i = 0; i < n; i++) { a[i].re /= n; a[i].im /= n; } } return a; } /** * Multiply two decimal numbers using FFT * @param {string} num1 - First number as a string * @param {string} num2 - Second number as a string * @returns {string} - Product of the two numbers */ function fftMultiply(num1, num2) { // Handle zero cases if (num1 === "0" || num2 === "0") return "0"; // Parse and separate integer and decimal parts const parseNumber = (numStr) => { const [intPart, decPart] = numStr.split("."); return { intPart: intPart || "0", decPart: decPart || "", totalDecimalPlaces: (decPart || "").length, }; }; const parsed1 = parseNumber(num1); const parsed2 = parseNumber(num2); // Combine numbers removing decimal point const combinedNum1 = parsed1.intPart + parsed1.decPart; const combinedNum2 = parsed2.intPart + parsed2.decPart; // Total decimal places const totalDecimalPlaces = parsed1.totalDecimalPlaces + parsed2.totalDecimalPlaces; // Convert to digit arrays (least significant first) const a = combinedNum1.split("").map(Number).reverse(); const b = combinedNum2.split("").map(Number).reverse(); // Determine result size and pad const resultSize = a.length + b.length; const fftSize = 1 << Math.ceil(Math.log2(resultSize)); // Pad input arrays while (a.length < fftSize) a.push(0); while (b.length < fftSize) b.push(0); // Convert to complex arrays const complexA = a.map((x) => new Complex(x, 0)); const complexB = b.map((x) => new Complex(x, 0)); // Perform FFT const fftA = fft(complexA); const fftB = fft(complexB); // Pointwise multiplication in frequency domain const fftProduct = new Array(fftSize); for (let i = 0; i < fftSize; i++) { fftProduct[i] = Complex.multiply(fftA[i], fftB[i]); } // Inverse FFT const product = fft(fftProduct, true); // Convert back to integer representation const result = new Array(resultSize).fill(0); for (let i = 0; i < resultSize; i++) { result[i] = Math.round(product[i].re); } // Handle carries for (let i = 0; i < result.length - 1; i++) { if (result[i] >= 10) { result[i + 1] += Math.floor(result[i] / 10); result[i] %= 10; } } // Remove leading zeros and convert to string while (result.length > 1 && result[result.length - 1] === 0) { result.pop(); } // Insert decimal point const resultStr = result.reverse().join(""); if (totalDecimalPlaces === 0) { return resultStr; } // Handle case where result might be shorter than decimal places if (resultStr.length <= totalDecimalPlaces) { return "0." + "0".repeat(totalDecimalPlaces - resultStr.length) + resultStr; } // Insert decimal point return ( resultStr.slice(0, -totalDecimalPlaces) + "." + resultStr.slice(-totalDecimalPlaces).replace(/0+$/, "") ); }
// Example Usage - Self verify using Python console.log( "Product of integers:", fftMultiply("12345678901234567890", "98765432109876543210") ); console.log("Product of decimals:", fftMultiply("123.456", "987.654")); console.log("Product of mixed decimals:", fftMultiply("12.34", "56.78")); console.log( "Product with different decimal places:", fftMultiply("1.23", "45.6789") ); console.log( "Product with large integers:", fftMultiply( "12345678901234567890786238746872364872364987293795843790587345", "9876543210987654321087634875782369487239874023894" ) ); const num1 = "1234567890123456789078623874687236487236498.7293795843790587345"; const num2 = "98765432109876543210876348757823694.87239874023894"; console.log("Product:", fftMultiply(num1, num2));
Product of integers: 1219326311370217952237463801111263526900 Product of decimals: 121931.812224 Product of mixed decimals: 700.6652 Product with different decimal places: 56.185047 Product with large integers: 121932631137021795232593613105722759976860134207381319681901040774443113318245930967231822167723255326824021430 Product: 121932631137021795232593613105722759976860134207381319681901040774443113318245.93096723182216772325532682402143
以上是使用快速傅里叶变换 (FFT) 乘以大十进制数的详细内容。更多信息请关注PHP中文网其他相关文章!