首页 > Java > java教程 > 使用 Java 在无限数组中查找元素

使用 Java 在无限数组中查找元素

WBOY
发布: 2024-09-11 12:30:29
原创
968 人浏览过

Finding an Element in an Infinite Array Using Java

Problem Statement

Given an infinite array of sorted integers, we need to find the index of a given target number. The array is "infinite," meaning we cannot determine its size in advance, so we can't just apply a traditional binary search directly.


Approach Overview

  1. Start with a small range: Initially, assume that the element lies within a small range (say, between indices 0 and 1).

  2. Dynamically increase the range: If the target element is not found in the initial range, we double the size of the range to search further. This exponential growth allows us to quickly hone in on the range where the target might be located.

  3. Binary search within the range: Once we determine a suitable range that contains the target, we apply binary search to efficiently find the target's index.


The Code

public class InfiniteArraySearch {
    public static void main(String[] args) {
        // Define the array (for demonstration purposes, treat this as infinite)
        int[] arr = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};  
        int target = 6;

        // Call the function to find the target element
        int result = findElementInInfiniteArray(arr, target);
        System.out.println("Element found at index: " + result);
    }

    // Function to find the target in the infinite array
    static int findElementInInfiniteArray(int[] arr, int target) {
        // Start with a small range
        int start = 0;
        int end = 1;

        // Dynamically increase the range until the target is within bounds
        while (target > arr[end]) {
            int newStart = end + 1;  // Update start to one after the current end
            end = end + (end - start + 1) * 2;  // Double the range
            start = newStart;  // Move the start to newStart
        }

        // Perform binary search within the determined range
        return binarySearch(arr, target, start, end);
    }

    // Standard binary search implementation
    static int binarySearch(int[] arr, int target, int start, int end) {
        while (start <= end) {
            int mid = start + (end - start) / 2;

            if (target < arr[mid]) {
                end = mid - 1;  // Move the end to the left
            } else if (target > arr[mid]) {
                start = mid + 1;  // Move the start to the right
            } else {
                return mid;  // Element found
            }
        }
        return -1;  // Element not found
    }
}
登录后复制

Explanation of the Code

1. Main Function

The main function defines an example array arr and a target value 6. For simplicity, we assume the array is finite here, but conceptually, we treat it as infinite. The main function then calls findElementInInfiniteArray to search for the target, and prints the index if found.

2. Range Expansion (Linearly Expanding the Search Area)

In the findElementInInfiniteArray method:

  • We begin by assuming that the element lies within the range [0, 1].
  • If the target is greater than the value at arr[end], it means the target is not within the current range. So, we expand the range exponentially by doubling it (end = end + (end - start + 1) * 2). This effectively allows us to cover more ground in each iteration.

3. Binary Search

Once we know that the target must lie between start and end, we perform a standard binary search. Binary search is an efficient way to search in sorted arrays, as it reduces the search space by half at each step. The key comparisons are:

  • If the target is less than the middle element (arr[mid]), search the left half.
  • If the target is greater, search the right half.
  • If the target matches the middle element, return its index.

4. Edge Cases

  • If the target is smaller than the smallest element in the array, or if the array doesn't contain the target at all, the algorithm will return -1.

Time Complexity

  1. Range Expansion: The range doubles with each iteration, so it takes O(log N) operations to find the right range where the target lies.

  2. Binary Search: Once the range is found, binary search runs in O(log M), where M is the size of the range.

Thus, the overall time complexity is approximately O(log N + log M).

以上是使用 Java 在无限数组中查找元素的详细内容。更多信息请关注PHP中文网其他相关文章!

来源:dev.to
本站声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
热门教程
更多>
最新下载
更多>
网站特效
网站源码
网站素材
前端模板