二元搜尋樹又稱二元排序樹,它或是一棵空樹,或是具有以下性質的二元樹:
1、若它的左子樹不為空,則左子樹上所有節點的值都小於根結點的值。
2、若它的右子樹不為空,則右子樹上所有節點的值都大於根結點的值。
3、它的左右子樹也分別為二元搜尋樹
假設我們已經建構好了一個這樣的二元樹,如下圖
我們要思考的第一個問題是如何找出某個值是否在該二元樹中?
#根據上述的邏輯,我們來把搜尋的方法進行完善。
#根據上述邏輯,我們來寫一個插入節點的程式碼。
再來分析:curDummy 和parentDummy 是怎麼找到「替罪羊」的。
class TreeNode{ public int val; public TreeNode left; public TreeNode right; public TreeNode(int val){ this.val = val; } } public class BinarySearchTree { TreeNode root; //在二叉树中 寻找指定 val 值的节点 // 找到了,返回其节点地址;没找到返回 null public TreeNode search(int key){ TreeNode cur = this.root; while(cur != null){ if(cur.val == key){ return cur; }else if(cur.val < key){ cur = cur.right; }else{ cur = cur.left; } } return null; } // 插入操作 public boolean insert(int key){ if(this.root == null){ this.root = new TreeNode(key); return true; } TreeNode cur = this.root; TreeNode parent = null; while(cur!=null){ if(key > cur.val){ parent = cur; cur = cur.right; }else if(cur.val == key){ return false; }else{ parent = cur; cur = cur.left; } } TreeNode node = new TreeNode(key); if(parent .val > key){ parent.left = node; }else{ parent.right = node; } return true; } // 删除操作 public void remove(int key){ TreeNode cur = root; TreeNode parent = null; // 寻找 删除节点位置。 while(cur!=null){ if(cur.val == key){ removeNode(cur,parent);// 真正删除节点的代码 break; }else if(cur.val < key){ parent = cur; cur = cur.right; }else{ parent = cur; cur = cur.left; } } } // 辅助删除方法:真正删除节点的代码 private void removeNode(TreeNode cur,TreeNode parent){ // 情况一 if(cur.left == null){ if(cur == this.root){ this.root = this.root.right; }else if( cur == parent.left){ parent.left = cur.right; }else{ parent.right = cur.right; } // 情况二 }else if(cur.right == null){ if(cur == this.root){ this.root = root.left; }else if(cur == parent.left){ parent.left = cur.left; }else{ parent.right = cur.left; } // 情况三 }else{ // 第二种方法:在删除节点的右子树中寻找最小值, TreeNode parentDummy = cur; TreeNode curDummy = cur.right; while(curDummy.left != null){ parentDummy = curDummy; curDummy = curDummy.left; } // 此时 curDummy 指向的 cur 右子树 cur.val = curDummy.val; if(parentDummy.left != curDummy){ parentDummy.right = curDummy.right; }else{ parentDummy.left = curDummy.right; } } } // 中序遍历 public void inorder(TreeNode root){ if(root == null){ return; } inorder(root.left); System.out.print(root.val+" "); inorder(root.right); } public static void main(String[] args) { int[] array = {10,8,19,3,9,4,7}; BinarySearchTree binarySearchTree = new BinarySearchTree(); for (int i = 0; i < array.length; i++) { binarySearchTree.insert(array[i]); } binarySearchTree.inorder(binarySearchTree.root); System.out.println();// 换行 System.out.print("插入重复的数据 9:" + binarySearchTree.insert(9)); System.out.println();// 换行 System.out.print("插入不重复的数据 1:" + binarySearchTree.insert(1)); System.out.println();// 换行 binarySearchTree.inorder(binarySearchTree.root); System.out.println();// 换行 binarySearchTree.remove(19); System.out.print("删除元素 19 :"); binarySearchTree.inorder(binarySearchTree.root); System.out.println();// 换行 System.out.print("查找不存在的数据50 :"); System.out.println(binarySearchTree.search(50)); System.out.print("查找存在的数据 7:"); System.out.println(binarySearchTree.search(7)); } }
插入和刪除操作都必須先查找,查找效率代表了二叉搜尋樹中各個操作的效能。
對有n個結點的二元搜尋樹,若每個元素查找的機率相等,則二叉搜尋樹平均查找長度是結點在二叉搜尋樹的深度的函數,即結點越深,則比較次數越多。
但對於同一個關鍵碼集合,如果各關鍵碼插入的次序不同,可能得到不同結構的二元搜尋樹:如果我們能保證二元搜尋樹的左右子樹高度差不超過1。盡量滿足高度平衡條件。
這就變成 AVL 樹了(高度平衡的二元搜尋樹)。而AVL樹,也有缺點:需要一個頻繁的旋轉。浪費很多效率。
至此 紅黑樹就誕生了,避免更多的旋轉。
TreeMap 和TreeSet 即java 中利用搜尋樹實現的Map 和Set;實際上用的是紅黑樹,而紅黑樹是一棵近似平衡的二元搜尋樹,即在二元搜尋樹的基礎之上顏色以及紅黑樹性質驗證,關於紅黑樹的內容,等博主學了,會寫博客的。
以上是Java二元搜尋樹實例分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!