首頁 > Java > java教程 > Java資料結構之AVL樹實例分析

Java資料結構之AVL樹實例分析

王林
發布: 2023-04-29 22:07:05
轉載
1298 人瀏覽過

Java資料結構之AVL樹實例分析

AVL樹的引入

搜尋二元樹有著極高的搜尋效率,但是搜尋二元樹會出現以下極端情況:
Java資料結構之AVL樹實例分析## 這樣的二元樹搜尋效率甚至比鍊錶還低。在搜尋二元樹基礎上出現的平衡二元樹(AVL樹)就解決了這樣的問題。當平衡二元樹(AVL樹)的某個節點左右子樹高度差的絕對值大於1時,就會透過旋轉操作來減少它們的高度差。

基本概念

AVL樹本質上還是一棵二元搜尋樹,它的特點是:

    ##本身首先是一棵
  1. 二元搜尋樹

  2. 每個結點的左右子樹的
  3. 高度之差的絕對值(平衡因子)最多為1

    。也就是說,AVL樹,本質上是帶了平衡功能的二元查找樹(二元排序樹,二元搜尋樹)。

  4. 當插入一個節點或刪除一個節點時,導致某一個節點的左右子樹高度差的絕對值大於1,這時需要透過
  5. 左旋

    右旋的操作使二元樹再次達到平衡狀態。

平衡因子(balanceFactor)

    #一個結點的左子樹與右子樹的
  • 高度之差

  • AVL樹中的任意結點的BF只可能是
  • -1,0和1。

  • 基礎設計

以下是AVL樹所需的簡單方法和屬性:

public class AVLTree <E extends Comparable<E>>{
    class Node{
        E value;
        Node left;
        Node right;
        int height;
        public Node(){}
        public Node(E value){
            this.value = value;
            height = 1;
            left = null;
            right = null;
        }
        public void display(){
            System.out.print(this.value + " ");
        }
    }
    Node root;
    int size;
    public int size(){
        return size;
    }
    public int getHeight(Node node) {
        if(node == null) return 0;
        return node.height;
    }
    //获取平衡因子(左右子树的高度差,大小为1或者0是平衡的,大小大于1不平衡)
    public int getBalanceFactor(){
        return getBalanceFactor(root);
    }
    public int getBalanceFactor(Node node){
        if(node == null) return 0;
        return getHeight(node.left) - getHeight(node.right);
    }

    //判断一个树是否是一个平衡二叉树
    public boolean isBalance(Node node){
        if(node == null) return true;
        int balanceFactor = Math.abs(getBalanceFactor(node.left) - getBalanceFactor(node.right));
        if(balanceFactor > 1) return false;
        return isBalance(node.left) && isBalance(node.right);
    }
    public boolean isBalance(){
        return isBalance(root);
    }

    //中序遍历树
    private  void inPrevOrder(Node root){
        if(root == null) return;
        inPrevOrder(root.left);
        root.display();
        inPrevOrder(root.right);
    }
    public void inPrevOrder(){
        System.out.print("中序遍历:");
        inPrevOrder(root);
    }}
登入後複製

RR(左旋)

往一個樹右子樹的右子樹上插入一個節點,導致二元樹變得不在平衡,如下圖,往平衡二元樹中插入5,導致這個樹變得不再平衡,此時需要左旋操作,如下:


程式碼如下:Java資料結構之AVL樹實例分析

//左旋,并且返回新的根节点
    public Node leftRotate(Node node){
        System.out.println("leftRotate");
       Node cur = node.right;
       node.right = cur.left;
       cur.left = node;
       //跟新node和cur的高度
        node.height = Math.max(getHeight(node.left),getHeight(node.right)) + 1;
        cur.height = Math.max(getHeight(cur.left),getHeight(cur.right)) + 1;
        return cur;
    }
登入後複製

LL(右旋)

#往一個AVL樹左子樹的左子樹上插入一個節點,導致二元樹變得不在平衡,如下圖,往平衡二元樹中插入2,導致這個樹變得不再平衡,此時需要左旋操作,如下:

## 程式碼如下:

 //右旋,并且返回新的根节点
    public Node rightRotate(Node node){
        System.out.println("rightRotate");
        Node cur = node.left;
        node.left = cur.right;
        cur.right = node;
        //跟新node和cur的高度
        node.height = Math.max(getHeight(node.left),getHeight(node.right)) + 1;
        cur.height = Math.max(getHeight(cur.left),getHeight(cur.right)) + 1;
        return cur;
    }
登入後複製
Java資料結構之AVL樹實例分析LR (先左旋再右旋)

往AVL樹

左子樹的右子樹

上插入一個節點,導致該樹不再平衡,需要先對

左子樹進行左旋,再對整棵樹右旋,如下圖所示,插入節點為5.
RL(先右旋再左旋) Java資料結構之AVL樹實例分析

在AVL樹

右子樹的左子樹

上插入一個節點,導致該樹不再平衡,需要先對

右子樹進行右旋,再對整棵樹左旋,如下圖所示,插入節點為2.
#新增節點Java資料結構之AVL樹實例分析

//添加元素
    public  void add(E e){
        root = add(root,e);
    }
    public Node add(Node node, E value) {
        if (node == null) {
            size++;
            return new Node(value);
        }
        if (value.compareTo(node.value) > 0) {
            node.right = add(node.right, value);
        } else if (value.compareTo(node.value) < 0) {
            node.left = add(node.left, value);
        }
        //跟新节点高度
        node.height = Math.max(getHeight(node.left), getHeight(node.right)) + 1;
        //获取当前节点的平衡因子
        int balanceFactor = getBalanceFactor(node);
        //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的左子树上,此时需要进行右旋
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) {
            return rightRotate(node);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在右子树子树的右子树上,此时需要进行左旋
        else if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) {
            return leftRotate(node);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的右子树上,此时需要先对左子树左旋,在整个树右旋
        else if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }
        //balanceFactor < -1 && getBalanceFactor(node.left) > 0
        //该子树不平衡且新插入节点(导致不平衡的节点)在右子树的左子树上,此时需要先对右子树右旋,再整个树左旋
        else if(balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }
        return node;
    }
登入後複製

刪除節點

 //删除节点
    public E remove(E value){
        root = remove(root,value);
        if(root == null){
            return null;
        }
        return root.value;
    }
    public Node remove(Node node, E value){
        Node retNode = null;
        if(node == null)
            return retNode;
        if(value.compareTo(node.value) > 0){
            node.right = remove(node.right,value);
            retNode = node;
        }
        else if(value.compareTo(node.value) < 0){
            node.left = remove(node.left,value);
            retNode = node;
        }
        //value.compareTo(node.value) = 0
        else{
            //左右节点都为空,或者左节点为空
            if(node.left == null){
                size--;
                retNode = node.right;
            }
            //右节点为空
            else if(node.right == null){
                size--;
                retNode = node.left;
            }
            //左右节点都不为空
            else{
                Node successor = new Node();
                //寻找右子树最小的节点
                Node cur = node.right;
                while(cur.left != null){
                    cur = cur.left;
                }
                successor.value  = cur.value;
                successor.right = remove(node.right,value);
                successor.left = node.left;
                node.left =  node.right = null;
                retNode = successor;
            }
            if(retNode == null)
                return null;
            //维护二叉树平衡
            //跟新height
            retNode.height = Math.max(getHeight(retNode.left),getHeight(retNode.right));
        }
        int balanceFactor = getBalanceFactor(retNode);
        //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的左子树上,此时需要进行右旋
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) {
            return rightRotate(retNode);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在右子树子树的右子树上,此时需要进行左旋
        else if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) {
            return leftRotate(retNode);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的右子树上,此时需要先对左子树左旋,在整个树右旋
        else if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }
        //该子树不平衡且新插入节点(导致不平衡的节点)在右子树的左子树上,此时需要先对右子树右旋,再整个树左旋
        else if(balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }
        return  retNode;
    }
登入後複製

以上是Java資料結構之AVL樹實例分析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:yisu.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板