首頁 > Java > java教程 > Java二元搜尋樹的增、插、刪和創建範例詳解

Java二元搜尋樹的增、插、刪和創建範例詳解

PHPz
發布: 2023-04-25 16:40:08
轉載
1523 人瀏覽過

    ①概念

    二元搜尋樹又稱為二元排序樹,它或是一棵空樹**,或是具有以下性質的二元樹:

    若它的左子樹不為空,則左子樹上所有節點的值都小於根節點的值

    若它的右子樹不為空,則右子樹上所有節點的值都大於根節點的值

    它的左右子樹也分別為二元搜尋樹

    Java二元搜尋樹的增、插、刪和創建範例詳解

    ②運算-尋找

    二元搜尋樹的查找類似於二分法查找

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    public Node search(int key) {
            Node cur = root;
            while (cur != null) {
                if(cur.val == key) {
                    return cur;
                }else if(cur.val < key) {
                    cur = cur.right;
                }else {
                    cur = cur.left;
                }
            }
            return null;
        }
    登入後複製

    ③操作-插入

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

      public boolean insert(int key) {
            Node node = new Node(key);
            if(root == null) {
                root = node;
                return true;
            }
     
            Node cur = root;
            Node parent = null;
     
            while(cur != null) {
                if(cur.val == key) {
                    return false;
                }else if(cur.val < key) {
                    parent = cur;
                    cur = cur.right;
                }else {
                    parent = cur;
                    cur = cur.left;
                }
            }
            //parent
            if(parent.val > key) {
                parent.left = node;
            }else {
                parent.right = node;
            }
     
            return true;
        }
    登入後複製

    ④操作-刪除

    刪除操作較為複雜,但理解了其原理還是比較容易

    設待刪除結點為cur, 待刪除結點的雙親結點為parent

    1. cur.left == null

    1. cur 是root,則root = cur.right

    2. cur 不是root,cur 是parent.left,則parent.left = cur.right

    3. cur 不是root,cur 是parent.right,則parent.right = cur.right

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    ##2. cur.right == null

    1. cur 是root,則root = cur.left

    2. cur 不是root,cur 是parent.left,則parent.left = cur.left

    3. cur 不是root,cur 是parent.right,則parent.right = cur.left

    第二種情況和第一種情況相同,只是方向相反,這裡不再畫圖

    3. cur.left != null && cur.right != null

    #需要使用替換法進行刪除,即在它的右子樹中尋找中序下的第一個結點(關鍵碼最小),用它的值填補到被刪除節點中,再來處理該結點的刪除問題

    當我們在左右子樹都不為空的情況下進行刪除,刪除該節點會破壞樹的結構,因此用替罪羊的方法來解決,實際刪除的過程還是上面的兩種情況,這裡還是用到了搜尋二元樹的性質

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    Java二元搜尋樹的增、插、刪和創建範例詳解

    public void remove(Node parent,Node cur) {
            if(cur.left == null) {
                if(cur == root) {
                    root = cur.right;
                }else if(cur == parent.left) {
                    parent.left = cur.right;
                }else {
                    parent.right = cur.right;
                }
            }else if(cur.right == null) {
                if(cur == root) {
                    root = cur.left;
                }else if(cur == parent.left) {
                    parent.left = cur.left;
                }else {
                    parent.right = cur.left;
                }
            }else {
                Node targetParent =  cur;
                Node target = cur.right;
                while (target.left != null) {
                    targetParent = target;
                    target = target.left;
                }
                cur.val = target.val;
                if(target == targetParent.left) {
                    targetParent.left = target.right;
                }else {
                    targetParent.right = target.right;
                }
            }
        }
     
      public void removeKey(int key) {
            if(root == null) {
                return;
            }
            Node cur = root;
            Node parent = null;
            while (cur != null) {
                if(cur.val == key) {
                    remove(parent,cur);
                    return;
                }else if(cur.val < key){
                    parent = cur;
                    cur = cur.right;
                }else {
                    parent = cur;
                    cur = cur.left;
                }
            }
        }
    登入後複製

    ⑤效能分析

    插入和刪除操作都必須先查找,查找效率代表了二元搜尋樹中各個操作的效能。

    對有n個結點的二元搜尋樹,若每個元素尋找的機率相等,則二元搜尋樹平均找出長度是結點在二元搜尋樹的深度的函數,即結點越深,則比較次數越多。

    但對於同一個關鍵碼集合,如果各關鍵碼插入的次序不同,可能會得到不同結構的二元搜尋樹:

    最優情況下,二元搜尋樹為完全二元樹,其平均比較次數為:

    Java二元搜尋樹的增、插、刪和創建範例詳解

    最差情況下,二元搜尋樹退化為單支樹,其平均比較次數為:

    Java二元搜尋樹的增、插、刪和創建範例詳解

    ⑥完整代码

    public class TextDemo {
     
        public static class Node {
            public int val;
            public Node left;
            public Node right;
     
            public Node (int val) {
                this.val = val;
            }
        }
     
     
        public Node root;
     
        /**
         * 查找
         * @param key
         */
        public Node search(int key) {
            Node cur = root;
            while (cur != null) {
                if(cur.val == key) {
                    return cur;
                }else if(cur.val < key) {
                    cur = cur.right;
                }else {
                    cur = cur.left;
                }
            }
            return null;
        }
     
        /**
         *
         * @param key
         * @return
         */
        public boolean insert(int key) {
            Node node = new Node(key);
            if(root == null) {
                root = node;
                return true;
            }
     
            Node cur = root;
            Node parent = null;
     
            while(cur != null) {
                if(cur.val == key) {
                    return false;
                }else if(cur.val < key) {
                    parent = cur;
                    cur = cur.right;
                }else {
                    parent = cur;
                    cur = cur.left;
                }
            }
            //parent
            if(parent.val > key) {
                parent.left = node;
            }else {
                parent.right = node;
            }
     
            return true;
        }
     
        public void remove(Node parent,Node cur) {
            if(cur.left == null) {
                if(cur == root) {
                    root = cur.right;
                }else if(cur == parent.left) {
                    parent.left = cur.right;
                }else {
                    parent.right = cur.right;
                }
            }else if(cur.right == null) {
                if(cur == root) {
                    root = cur.left;
                }else if(cur == parent.left) {
                    parent.left = cur.left;
                }else {
                    parent.right = cur.left;
                }
            }else {
                Node targetParent =  cur;
                Node target = cur.right;
                while (target.left != null) {
                    targetParent = target;
                    target = target.left;
                }
                cur.val = target.val;
                if(target == targetParent.left) {
                    targetParent.left = target.right;
                }else {
                    targetParent.right = target.right;
                }
            }
        }
     
        public void removeKey(int key) {
            if(root == null) {
                return;
            }
            Node cur = root;
            Node parent = null;
            while (cur != null) {
                if(cur.val == key) {
                    remove(parent,cur);
                    return;
                }else if(cur.val < key){
                    parent = cur;
                    cur = cur.right;
                }else {
                    parent = cur;
                    cur = cur.left;
                }
            }
        }
     
    }
    登入後複製

    以上是Java二元搜尋樹的增、插、刪和創建範例詳解的詳細內容。更多資訊請關注PHP中文網其他相關文章!

    相關標籤:
    來源:yisu.com
    本網站聲明
    本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
    熱門教學
    更多>
    最新下載
    更多>
    網站特效
    網站源碼
    網站素材
    前端模板