這篇文章主要介紹了Python基於numpy靈活定義神經網路結構的方法,結合實例形式分析了神經網路結構的原理及Python具體實現方法,涉及Python使用numpy擴展進行數學運算的相關操作技巧,需要的朋友可以參考下
本文實例講述了Python基於numpy靈活定義神經網路結構的方法。分享給大家供大家參考,如下:
用numpy可以靈活定義神經網路結構,還可以應用numpy強大的矩陣運算功能!
一、用法
##1).定義一個三層神經網路:'''示例一''' nn = NeuralNetworks([3,4,2]) # 定义神经网络 nn.fit(X,y) # 拟合 print(nn.predict(X)) #预测
輸入層節點數目:3
隱藏層節點數目:4
輸出層節點數目:2
'''示例二''' nn = NeuralNetworks([3,5,7,4,2]) # 定义神经网络 nn.fit(X,y) # 拟合 print(nn.predict(X)) #预测
輸入層節點數目:3
隱藏層1節點數目:5
隱藏層2節點數目:7
隱藏層3節點數目:4
輸出層節點數目:2
#二、實作##如下實作方式為本人(@hhh5460)原創。
重點: dtype=object
#
import numpy as np class NeuralNetworks(object): '''''' def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4): '''搭建神经网络框架''' # 各层节点数目 (向量) self.n = np.array(n_layers) # 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]' self.size = self.n.size # 层的总数 # 层 (向量) self.z = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然 self.a = np.empty(self.size, dtype=object) self.data_a = np.empty(self.size, dtype=object) # 偏置 (向量) self.b = np.empty(self.size, dtype=object) self.delta_b = np.empty(self.size, dtype=object) # 权 (矩阵) self.w = np.empty(self.size, dtype=object) self.delta_w = np.empty(self.size, dtype=object) # 填充 for i in range(self.size): self.a[i] = np.zeros(self.n[i]) # 全零 self.z[i] = np.zeros(self.n[i]) # 全零 self.data_a[i] = np.zeros(self.n[i]) # 全零 if i < self.size - 1: self.b[i] = np.ones(self.n[i+1]) # 全一 self.delta_b[i] = np.zeros(self.n[i+1]) # 全零 mu, sigma = 0, 0.1 # 均值、方差 self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化 self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零
import numpy as np ''' 参考:http://ufldl.stanford.edu/wiki/index.php/%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C ''' class NeuralNetworks(object): '''''' def __init__(self, n_layers=None, active_type=None, n_iter=10000, error=0.05, alpha=0.5, lamda=0.4): '''搭建神经网络框架''' self.n_iter = n_iter # 迭代次数 self.error = error # 允许最大误差 self.alpha = alpha # 学习速率 self.lamda = lamda # 衰减因子 # 此处故意拼写错误! if n_layers is None: raise '各层的节点数目必须设置!' elif not isinstance(n_layers, list): raise 'n_layers必须为list类型,如:[3,4,2] 或 n_layers=[3,4,2]' # 节点数目 (向量) self.n = np.array(n_layers) self.size = self.n.size # 层的总数 # 层 (向量) self.a = np.empty(self.size, dtype=object) # 先占位(置空),dtype=object !如下皆然 self.z = np.empty(self.size, dtype=object) # 偏置 (向量) self.b = np.empty(self.size, dtype=object) self.delta_b = np.empty(self.size, dtype=object) # 权 (矩阵) self.w = np.empty(self.size, dtype=object) self.delta_w = np.empty(self.size, dtype=object) # 残差 (向量) self.data_a = np.empty(self.size, dtype=object) # 填充 for i in range(self.size): self.a[i] = np.zeros(self.n[i]) # 全零 self.z[i] = np.zeros(self.n[i]) # 全零 self.data_a[i] = np.zeros(self.n[i]) # 全零 if i < self.size - 1: self.b[i] = np.ones(self.n[i+1]) # 全一 self.delta_b[i] = np.zeros(self.n[i+1]) # 全零 mu, sigma = 0, 0.1 # 均值、方差 self.w[i] = np.random.normal(mu, sigma, (self.n[i], self.n[i+1])) # # 正态分布随机化 self.delta_w[i] = np.zeros((self.n[i], self.n[i+1])) # 全零 # 激活函数 self.active_functions = { 'sigmoid': self.sigmoid, 'tanh': self.tanh, 'radb': self.radb, 'line': self.line, } # 激活函数的导函数 self.derivative_functions = { 'sigmoid': self.sigmoid_d, 'tanh': self.tanh_d, 'radb': self.radb_d, 'line': self.line_d, } if active_type is None: self.active_type = ['sigmoid'] * (self.size - 1) # 默认激活函数类型 else: self.active_type = active_type def sigmoid(self, z): if np.max(z) > 600: z[z.argmax()] = 600 return 1.0 / (1.0 + np.exp(-z)) def tanh(self, z): return (np.exp(z) - np.exp(-z)) / (np.exp(z) + np.exp(-z)) def radb(self, z): return np.exp(-z * z) def line(self, z): return z def sigmoid_d(self, z): return z * (1.0 - z) def tanh_d(self, z): return 1.0 - z * z def radb_d(self, z): return -2.0 * z * np.exp(-z * z) def line_d(self, z): return np.ones(z.size) # 全一 def forward(self, x): '''正向传播(在线)''' # 用样本 x 走一遍,刷新所有 z, a self.a[0] = x for i in range(self.size - 1): self.z[i+1] = np.dot(self.a[i], self.w[i]) + self.b[i] self.a[i+1] = self.active_functions[self.active_type[i]](self.z[i+1]) # 加了激活函数 def err(self, X, Y): '''误差''' last = self.size-1 err = 0.0 for x, y in zip(X, Y): self.forward(x) err += 0.5 * np.sum((self.a[last] - y)**2) err /= X.shape[0] err += sum([np.sum(w) for w in self.w[:last]**2]) return err def backward(self, y): '''反向传播(在线)''' last = self.size - 1 # 用样本 y 走一遍,刷新所有delta_w, delta_b self.data_a[last] = -(y - self.a[last]) * self.derivative_functions[self.active_type[last-1]](self.z[last]) # 加了激活函数的导函数 for i in range(last-1, 1, -1): self.data_a[i] = np.dot(self.w[i], self.data_a[i+1]) * self.derivative_functions[self.active_type[i-1]](self.z[i]) # 加了激活函数的导函数 # 计算偏导 p_w = np.outer(self.a[i], self.data_a[i+1]) # 外积!感谢 numpy 的强大! p_b = self.data_a[i+1] # 更新 delta_w, delta_w self.delta_w[i] = self.delta_w[i] + p_w self.delta_b[i] = self.delta_b[i] + p_b def update(self, n_samples): '''更新权重参数''' last = self.size - 1 for i in range(last): self.w[i] -= self.alpha * ((1/n_samples) * self.delta_w[i] + self.lamda * self.w[i]) self.b[i] -= self.alpha * ((1/n_samples) * self.delta_b[i]) def fit(self, X, Y): '''拟合''' for i in range(self.n_iter): # 用所有样本,依次 for x, y in zip(X, Y): self.forward(x) # 前向,更新 a, z; self.backward(y) # 后向,更新 delta_w, delta_b # 然后,更新 w, b self.update(len(X)) # 计算误差 err = self.err(X, Y) if err < self.error: break # 整千次显示误差(否则太无聊!) if i % 1000 == 0: print('iter: {}, error: {}'.format(i, err)) def predict(self, X): '''预测''' last = self.size - 1 res = [] for x in X: self.forward(x) res.append(self.a[last]) return np.array(res) if __name__ == '__main__': nn = NeuralNetworks([2,3,4,3,1], n_iter=5000, alpha=0.4, lamda=0.3, error=0.06) # 定义神经网络 X = np.array([[0.,0.], # 准备数据 [0.,1.], [1.,0.], [1.,1.]]) y = np.array([0,1,1,0]) nn.fit(X,y) # 拟合 print(nn.predict(X)) # 预测
以上是Python中關於numpy靈活定義神經網路結構的實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!