Rumah > masalah biasa > 一个运用二分查找算法的程序的时间复杂度是什么

一个运用二分查找算法的程序的时间复杂度是什么

青灯夜游
Lepaskan: 2023-01-13 00:30:29
asal
33776 orang telah melayarinya

一个运用二分查找算法的程序的时间复杂度是“对数级别”。二分查找是一种效率较高的查找方法,算法复杂度即是while循环的次数,时间复杂度可以表示“O(h)=O(log2n)”。

一个运用二分查找算法的程序的时间复杂度是什么

本教程操作环境:windows7系统、Dell G3电脑。

一个运用二分查找算法的程序的时间复杂度是“对数级别”。

相关推荐:《编程学习

二分查找也称折半查找(Binary Search),它是一种效率较高的查找方法。但是,折半查找要求线性表必须采用顺序存储结构,而且表中元素按关键字有序排列。

查找过程:

首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。

算法复杂度:

二分查找的基本思想是将n个元素分成大致相等的两部分,取a[n/2]与x做比较,如果x=a[n/2],则找到x,算法中止;如果xa[n/2],则只要在数组a的右半部搜索x.

时间复杂度即是while循环的次数。

总共有n个元素,

渐渐跟下去就是n,n/2,n/4,....n/2^k(接下来操作元素的剩余个数),其中k就是循环的次数

由于你n/2^k取整后>=1

即令n/2^k=1

可得k=log2n,(是以2为底,n的对数)

所以时间复杂度可以表示O(h)=O(log2n)

下面提供一段二分查找实现的伪代码:

BinarySearch(max,min,des)
mid-<(max+min)/2
while(min<=max)
mid=(min+max)/2
if mid=des then
return mid
elseif mid >des then
max=mid-1
else
min=mid+1
return max
Salin selepas log masuk

折半查找法也称为二分查找法,它充分利用了元素间的次序关系,采用分治策略,可在最坏的情况下用O(log n)完成搜索任务。它的基本思想是:(这里假设数组元素呈升序排列)将n个元素分成个数大致相同的两半,取a[n/2]与欲查找的x作比较,如果x=a[n/2]则找到x,算法终止;如 果xa[n/2],则我们只要在数组a的右 半部继续搜索x。

想要查阅更多相关文章,请访问PHP中文网!!

Atas ialah kandungan terperinci 一个运用二分查找算法的程序的时间复杂度是什么. Untuk maklumat lanjut, sila ikut artikel berkaitan lain di laman web China PHP!

Label berkaitan:
sumber:php.cn
Kenyataan Laman Web ini
Kandungan artikel ini disumbangkan secara sukarela oleh netizen, dan hak cipta adalah milik pengarang asal. Laman web ini tidak memikul tanggungjawab undang-undang yang sepadan. Jika anda menemui sebarang kandungan yang disyaki plagiarisme atau pelanggaran, sila hubungi admin@php.cn
Tutorial Popular
Lagi>
Muat turun terkini
Lagi>
kesan web
Kod sumber laman web
Bahan laman web
Templat hujung hadapan