Home >Web Front-end >JS Tutorial >Detailed explanation of deduplication and optimization of numerical arrays using js to construct a binary tree

Detailed explanation of deduplication and optimization of numerical arrays using js to construct a binary tree

亚连
亚连Original
2018-05-28 17:33:161662browse

This article mainly introduces you to the relevant information about deduplication and optimization of numerical arrays using js to build binary trees. The article introduces it in great detail through sample codes. It has certain reference learning value for everyone's study or work. It needs Friends, let’s study together.

Preface

This article mainly introduces the relevant content about constructing a binary tree with js to deduplicate and optimize numerical arrays. It is shared for your reference. Learning, I won’t say much more below, let’s take a look at the detailed introduction.

Common two-layer loop to implement array deduplication

##

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
let newArr = []
for (let i = 0; i < arr.length; i++) {
 let unique = true
 for (let j = 0; j < newArr.length; j++) {
  if (newArr[j] === arr[i]) {
   unique = false
   break
  }
 }
 if (unique) {
  newArr.push(arr[i])
 }
}
console.log(newArr)

Construct a binary tree to achieve deduplication (only applicable to numeric type arrays)

Construct the previously traversed elements into a binary tree, each node in the tree All are satisfied: the value of the left child node < the value of the current node < the value of the right child node

This optimizes the process of judging whether the element has appeared before

If the element is greater than If the current node is large, you only need to determine whether the element appears in the right subtree of the node.

If the element is smaller than the current node, you only need to determine whether the element appears in the left subtree of the node. Just pass

let arr = [0, 1, 2, 2, 5, 7, 11, 7, 6, 4,5, 2, 2]
class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
 }
}
class BinaryTree {
 constructor() {
  this.root = null
  this.arr = []
 }

 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   this.root = node
   this.arr.push(value)
   return this.arr
  }
  let current = this.root
  while (true) {
   if (value > current.value) {
    if (current.right) {
     current = current.right
    } else {
     current.right = node
     this.arr.push(value)
     break
    }
   }
   if (value < current.value) {
    if (current.left) {
     current = current.left
    } else {
     current.left = node
     this.arr.push(value)
     break
    }
   }
   if (value === current.value) {
    break
   }
  }
  return this.arr
 }
}

let binaryTree = new BinaryTree()
for (let i = 0; i < arr.length; i++) {
 binaryTree.insert(arr[i])
}
console.log(binaryTree.arr)

Optimization idea one, record the maximum and minimum values

Record the maximum and minimum values ​​of inserted elements. If it is larger than the largest element or smaller than the smallest element, insert it directly

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
 }
}
class BinaryTree {
 constructor() {
  this.root = null
  this.arr = []
  this.max = null
  this.min = null
 }

 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   this.root = node
   this.arr.push(value)
   this.max = value
   this.min = value
   return this.arr
  }
  if (value > this.max) {
   this.arr.push(value)
   this.max = value
   this.findMax().right = node
   return this.arr
  }
  if (value < this.min) {
   this.arr.push(value)
   this.min = value
   this.findMin().left = node
   return this.arr
  }
  let current = this.root
  while (true) {
   if (value > current.value) {
    if (current.right) {
     current = current.right
    } else {
     current.right = node
     this.arr.push(value)
     break
    }
   }
   if (value < current.value) {
    if (current.left) {
     current = current.left
    } else {
     current.left = node
     this.arr.push(value)
     break
    }
   }
   if (value === current.value) {
    break
   }
  }
  return this.arr
 }

 findMax() {
  let current = this.root
  while (current.right) {
   current = current.right
  }
  return current
 }

 findMin() {
  let current = this.root
  while (current.left) {
   current = current.left
  }
  return current
 }
}

let binaryTree = new BinaryTree()
for (let i = 0; i < arr.length; i++) {
 binaryTree.insert(arr[i])
}
console.log(binaryTree.arr)

##Optimization Idea 2, build a red-black tree
Build a red-black tree and balance the height of the tree

For the red-black tree, please see the red-black tree Insert

let arr = [11, 12, 13, 9, 8, 7, 0, 1, 2, 2, 5, 7, 11, 11, 7, 6, 4, 5, 2, 2]
console.log(Array.from(new Set(arr)))

class Node {
 constructor(value) {
  this.value = value
  this.left = null
  this.right = null
  this.parent = null
  this.color = &#39;red&#39;
 }
}

class RedBlackTree {
 constructor() {
  this.root = null
  this.arr = []
 }

 insert(value) {
  let node = new Node(value)
  if (!this.root) {
   node.color = &#39;black&#39;
   this.root = node
   this.arr.push(value)
   return this
  }
  let cur = this.root
  let inserted = false
  while (true) {
   if (value > cur.value) {
    if (cur.right) {
     cur = cur.right
    } else {
     cur.right = node
     this.arr.push(value)
     node.parent = cur
     inserted = true
     break
    }
   }

   if (value < cur.value) {
    if (cur.left) {
     cur = cur.left
    } else {
     cur.left = node
     this.arr.push(value)
     node.parent = cur
     inserted = true
     break
    }
   }

   if (value === cur.value) {
    break
   }
  }
  // 调整树的结构
  if(inserted){
   this.fixTree(node)
  }
  return this
 }

 fixTree(node) {
  if (!node.parent) {
   node.color = &#39;black&#39;
   this.root = node
   return
  }
  if (node.parent.color === &#39;black&#39;) {
   return
  }
  let son = node
  let father = node.parent
  let grandFather = father.parent
  let directionFtoG = father === grandFather.left ? &#39;left&#39; : &#39;right&#39;
  let uncle = grandFather[directionFtoG === &#39;left&#39; ? &#39;right&#39; : &#39;left&#39;]
  let directionStoF = son === father.left ? &#39;left&#39; : &#39;right&#39;
  if (!uncle || uncle.color === &#39;black&#39;) {
   if (directionFtoG === directionStoF) {
    if (grandFather.parent) {
     grandFather.parent[grandFather.parent.left === grandFather ? &#39;left&#39; : &#39;right&#39;] = father
     father.parent = grandFather.parent
    } else {
     this.root = father
     father.parent = null
    }
    father.color = &#39;black&#39;
    grandFather.color = &#39;red&#39;

    father[father.left === son ? &#39;right&#39; : &#39;left&#39;] && (father[father.left === son ? &#39;right&#39; : &#39;left&#39;].parent = grandFather)
    grandFather[grandFather.left === father ? &#39;left&#39; : &#39;right&#39;] = father[father.left === son ? &#39;right&#39; : &#39;left&#39;]

    father[father.left === son ? &#39;right&#39; : &#39;left&#39;] = grandFather
    grandFather.parent = father
    return
   } else {
    grandFather[directionFtoG] = son
    son.parent = grandFather

    son[directionFtoG] && (son[directionFtoG].parent = father)
    father[directionStoF] = son[directionFtoG]

    father.parent = son
    son[directionFtoG] = father
    this.fixTree(father)
   }
  } else {
   father.color = &#39;black&#39;
   uncle.color = &#39;black&#39;
   grandFather.color = &#39;red&#39;
   this.fixTree(grandFather)
  }
 }
}

let redBlackTree = new RedBlackTree()
for (let i = 0; i < arr.length; i++) {
 redBlackTree.insert(arr[i])
}
console.log(redBlackTree.arr)

Other deduplication methods

Through Set Object deduplication


[...new Set(arr)]

Deduplication through

sort()

reduce() method
After sorting, compare adjacent elements to see if they are the same. If they are different, add them to the returned array.

It is worth noting that when sorting, the default

compare(2, '2')

Return 0; while reduce(), perform congruent comparison

let arr = [0, 1, 2, &#39;2&#39;, 2, 5, 7, 11, 7, 5, 2, &#39;2&#39;, 2]
let newArr = []
arr.sort((a, b) => {
 let res = a - b
 if (res !== 0) {
  return res
 } else {
  if (a === b) {
   return 0
  } else {
   if (typeof a === &#39;number&#39;) {
    return -1
   } else {
    return 1
   }
  }
 }
}).reduce((pre, cur) => {
 if (pre !== cur) {
  newArr.push(cur)
  return cur
 }
 return pre
}, null)

Through

includes()

map() Method to remove duplicates

let arr = [0, 1, 2, &#39;2&#39;, 2, 5, 7, 11, 7, 5, 2, &#39;2&#39;, 2]
let newArr = []
arr.map(a => !newArr.includes(a) && newArr.push(a))

By

includes()

reduce() Method to remove duplicates

let arr = [0, 1, 2, &#39;2&#39;, 2, 5, 7, 11, 7, 5, 2, &#39;2&#39;, 2]
let newArr = arr.reduce((pre, cur) => {
  !pre.includes(cur) && pre.push(cur)
  return pre
}, [])

Deduplicate the JSON object through the key value of the object


let arr = [0, 1, 2, &#39;2&#39;, 2, 5, 7, 11, 7, 5, 2, &#39;2&#39;, 2]
let obj = {}
arr.map(a => {
  if(!obj[JSON.stringify(a)]){
    obj[JSON.stringify(a)] = 1
  }
})
console.log(Object.keys(obj).map(a => JSON.parse(a)))

The above is what I compiled for everyone. I hope it will be helpful to everyone in the future.

Related articles:

jquery1.8 version uses ajax to implement problem analysis and solutions for WeChat calls


Written Lightweight ajax component 01-Comparison with various implementation methods on the webform platform


Jquery Ajax request file download operation failure analysis and solutions


The above is the detailed content of Detailed explanation of deduplication and optimization of numerical arrays using js to construct a binary tree. For more information, please follow other related articles on the PHP Chinese website!

Statement:
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn