Home > Article > Backend Development > Python implementation of binary tree algorithm example
This article brings you some examples of algorithms for implementing binary trees in Python. It has certain reference value. Friends in need can refer to it. I hope it will be helpful to you.
Node definition
class Node(object): def __init__(self, left_child, right_child, value): self._left_child = left_child self._right_child = right_child self._value = value @property def left_child(self): return self._left_child @property def right_child(self): return self._right_child @left_child.setter def left_child(self, value): self._left_child = value @right_child.setter def right_child(self, value): self._right_child = value @property def value(self): return self._value @value.setter def value(self, value): self._value = value
class Tree(object): def __init__(self, value): self._root = Node(None, None, value=value) @property def root(self): return self._root
''' 先序遍历,递归方式 ''' def preoder(root): if not isinstance(root, Node): return None preorder_res = [] if root: preorder_res.append(root.value) preorder_res += preoder(root.left_child) preorder_res += preoder(root.right_child) return preorder_res
''' 先序遍历,非递归方式 ''' def pre_order_not_recursion(root): if not isinstance(root, Node): return None stack = [root] result = [] while stack: node = stack.pop(-1) if node: result.append(node.value) stack.append(node.right_child) stack.append(node.left_child) return result
''' 中序遍历,递归方式 ''' def middle_order(root): if not isinstance(root, Node): return None middle_res = [] if root: middle_res += middle_order(root.left_child) middle_res.append(root.value) middle_res += middle_order(root.right_child) return middle_res
''' 中序遍历,非递归方式 ''' def middle_order_bot_recursion(root): if not isinstance(root, Node): return None result = [] stack = [root.right_child, root.value, root.left_child] while stack: temp = stack.pop(-1) if temp: if isinstance(temp, Node): stack.append(temp.right_child) stack.append(temp.value) stack.append(temp.left_child) else: result.append(temp) return result
''' 后序遍历,递归方式 ''' def post_order(root): if not isinstance(root, Node): return None post_res = [] if root: post_res += post_order(root.left_child) post_res += post_order(root.right_child) post_res.append(root.value) return post_res
''' 后序遍历,非递归方式 ''' def post_order_not_recursion(root): if not isinstance(root, Node): return None stack = [root.value, root.right_child, root.left_child] result = [] while stack: temp_node = stack.pop(-1) if temp_node: if isinstance(temp_node, Node): stack.append(temp_node.value) stack.append(temp_node.right_child) stack.append(temp_node.left_child) else: result.append(temp_node) return result
''' 分层遍历,使用队列实现 ''' def layer_order(root): if not isinstance(root, Node): return None queue = [root.value, root.left_child, root.right_child] result = [] while queue: temp = queue.pop(0) if temp: if isinstance(temp, Node): queue.append(temp.value) queue.append(temp.left_child) queue.append(temp.right_child) else: result.append(temp) return result
''' 计算二叉树结点个数,递归方式 NodeCount(root) = NodeCount(root.left_child) + NodeCount(root.right_child) ''' def node_count(root): if root and not isinstance(root, Node): return None if root: return node_count(root.left_child) + node_count(root.right_child) + 1 else: return 0 ''' 计算二叉树结点个数,非递归方式 借用分层遍历计算 ''' def node_count_not_recursion(root): if root and not isinstance(root, Node): return None return len(layer_order(root))
''' 计算二叉树深度,递归方式 tree_deep(root) = 1 + max(tree_deep(root.left_child), tree_deep(root.right_child)) ''' def tree_deep(root): if root and not isinstance(root, Node): return None if root: return 1 + max(tree_deep(root.left_child), tree_deep(root.right_child)) else: return 0 ''' 计算二叉树深度,非递归方法 同理参考分层遍历的思想 ''' def tree_deep_not_recursion(root): if root and not isinstance(root, Node): return None result = 0 queue = [(root, 1)] while queue: temp_node, temp_layer = queue.pop(0) if temp_node: queue.append((temp_node.left_child, temp_layer+1)) queue.append((temp_node.right_child, temp_layer+1)) result = temp_layer + 1 return result-1
''' 计算二叉树第k层节点个数,递归方式 kth_node_count(root, k) = kth_node_count(root.left_count, k-1) + kth_node_count(root.right_count, k-1) ''' def kth_node_count(root, k): if root and not isinstance(root, Node): return None if not root or k <= 0: return 0 if k == 1: return 1 return kth_node_count(root.left_child, k-1) + kth_node_count(root.right_child, k-1) ''' 计算二叉树第K层节点个数,非递归方式 ''' def kth_node_count_not_recursion(root, k): if root and not isinstance(root, Node): return None if not root or k <= 0: return 0 if k == 1: return 1 queue = [(root, 1)] result = 0 while queue: temp_node, temp_layer = queue.pop(0) if temp_node: if temp_layer == k: result += 1 elif temp_layer > k: return result else: queue.append((temp_node.left_child, temp_layer+1)) queue.append((temp_node.right_child, temp_layer+1)) return result
''' 计算二叉树叶子节点个数,递归方式 关键点是叶子节点的判断标准,左右孩子皆为None ''' def leaf_count(root): if root and not isinstance(root, Node): return None if not root: return 0 if not root.left_child and not root.right_child: return 1 return leaf_count(root.left_child) + leaf_count(root.right_child)
''' 判断两个二叉树是不是相同,递归方式 isSame(root1, root2) = (root1.value == root2.value) and isSame(root1.left, root2.left) and isSame(root1.right, root2.right) ''' def is_same_tree(root1, root2): if not root1 and not root2: return True if root1 and root2: return (root1.value == root2.value) and \ is_same_tree(root1.left_child, root2.left_child) and \ is_same_tree(root1.right_child, root2.right_child) else: return False
''' 判断是否为二分查找树BST,递归方式 二分查找树的定义搞清楚,二分查找树的中序遍历结果为递增序列 ''' def is_bst_tree(root): if root and not isinstance(root, Node): return None def is_asc(order): for i in range(len(order)-1): if order[i] > order[i+1]: return False return True return is_asc(middle_order_bot_recursion(root))
if __name__ == "__main__": tree = Tree(1) tree1 = Tree(1) node6 = Node(None, None, 7) node5 = Node(None, None, 6) node4 = Node(None, None, 5) node3 = Node(None, None, 4) node2 = Node(node5, node6, 3) node1 = Node(node3, node4, 2) tree.root.left_child = node1 tree.root.right_child = node2 tree1.root.left_child = node2 tree1.root.right_child = node2 print(is_bst_tree(tree.root))
The above is the detailed content of Python implementation of binary tree algorithm example. For more information, please follow other related articles on the PHP Chinese website!