二分探索ツリーは、リンクリスト挿入の柔軟性と順序付けられた配列検索の効率を組み合わせたアルゴリズムです。以下は、BST のさまざまなメソッドを実装するための純粋なコードです。
二分ソート ツリーは、空の木、または次のプロパティを持つ 二分木のいずれかです:
左のサブツリーが空でない場合、次に、左のサブツリー上のすべてのノードの値はそのルートノードの値
- 以下になります。右のサブツリーが空でない場合、すべてのノードの値は
右側のサブツリー 両方の は 以上である ルート ノード の値
- もそれぞれ
バイナリ ソート ツリー
public class BST<K extends Comparable<K>, V> { private Node root; private class Node { private K key; private V value; private Node left; private Node right; private int N; public Node(K key, V value, int N) { this.key = key; this.value = value; this.N = N; } } public int size() { return size(root); } private int size(Node x) { if (x == null) return 0; else return x.N; } }
public V get(K key) { return get(root, key); } private V get(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp == 0) return root.value; else if (comp < 0) return get(root.left, key); else return get(root.right, key); }
public void put(K key, V value) { root = put(root, key, value); } private Node put(Node root, K key, V value) { if (root == null) return new Node(key, value, 1); int comp = key.compareTo(root.key); if (comp == 0) root.value = value; else if (comp < 0) root.left = put(root.left, key, value); else root.right = put(root.right, key, value); root.N = size(root.left) + size(root.right) + 1; return root; }
public K min() { return min(root).key; } private Node min(Node root) { if (root.left == null) return root; return min(root.left); }
public K max() { return max(root).key; } private Node max(Node root2) { if (root.right == null) return root; return max(root.right); }
public K floor(K key) { Node x = floor(root, key); if (x == null) return null; return x.key; } private Node floor(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp < 0) return floor(root.left, key); else if (comp > 0 && root.right != null && key.compareTo(min(root.right).key) >= 0) return floor(root.right, key); else return root; }
public K ceiling(K key) { Node x = ceiling(root, key); if (x == null) return null; return x.key; } private Node ceiling(Node root, K key) { if (root == null) return null; int comp = key.compareTo(root.key); if (comp > 0) return ceiling(root.right, key); else if (comp < 0 && root.left != null && key.compareTo(max(root.left).key) >= 0) return ceiling(root.left, key); else return root; }
public K select(int k) { //找出BST中序号为k的键 return select(root, k); } private K select(Node root, int k) { if (root == null) return null; int comp = k - size(root.left); if (comp < 0) return select(root.left, k); else if (comp > 0) return select(root.right, k - (size(root.left) + 1)); else return root.key; }
public int rank(K key) { //找出BST中键为key的序号是多少 return rank(root, key); } private int rank(Node root, K key) { if (root == null) return 0; int comp = key.compareTo(root.key); if (comp == 0) return size(root.left); else if (comp < 0) return rank(root.left, key); else return 1 + size(root.left) + rank(root.right, key); }
public void deleteMin() { root = deleteMin(root); } private Node deleteMin(Node root) { if (root.left == null) return root.right; root.left = deleteMin(root.left); root.N = size(root.left) + size(root.right) + 1; return root; }
public void deleteMax() { root = deleteMax(root); } private Node deleteMax(Node root) { if (root.right == null) return root.left; root.right = deleteMax(root.right); root.N = size(root.left) + size(root.right) + 1; return root; }
以上がJava-Binary Search Tree (BST) アルゴリズムのサンプル コード共有の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。