Home > Java > javaTutorial > Java implements sample code to quickly find 21-digit flower numbers

Java implements sample code to quickly find 21-digit flower numbers

黄舟
Release: 2017-10-17 10:07:22
Original
1400 people have browsed it

This article mainly introduces to you the relevant information about using Java to quickly find the 21-digit flower number. The article introduces it in detail through the example code. It has certain reference for everyone's study or work. Friends who need it can follow it. Let’s learn together with the editor.

Preface

This article mainly introduces the relevant content about using Java to quickly find the 21-digit flower number, and shares it for your reference and study. , not much to say below, let’s take a look at the detailed introduction.

I encountered an algorithm problem when I was preparing for the competition. Find the number of all 21 flowers. I would like to share it for your reference. It is already very efficient.

Sample code


##

package com.jianggujin;

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.List;

/**
 * 水仙花数
 * 
 * @author jianggujin
 *
 */
public class NarcissusNumber
{
 /**
 * 记录10的0~N次方
 */
 private BigInteger[] powerOf10;
 /**
 * 记录0到9中任意数字i的N次方乘以i出现的次数j的结果(i^N*j)
 */
 private BigInteger[][] preTable1;
 /**
 * 记录离PreTable中对应数最近的10的k次方
 */
 private int[][] preTable2;
 /**
 * 记录0到9中每个数出现的次数
 */
 private int[] selected = new int[10];
 /**
 * 记录水仙花数的位数
 */
 private int length;

 /**
 * 记录水仙花数
 */
 private List<BigInteger> results;
 /**
 * 记录当前的进制
 */
 private int numberSystem = 10;

 /**
 * @param n
 *   水仙花数的位数
 */
 private NarcissusNumber(int n)
 {
  powerOf10 = new BigInteger[n + 1];
  powerOf10[0] = BigInteger.ONE;
  length = n;
  results = new ArrayList<BigInteger>();

  // 初始化powerPowerOf10
  for (int i = 1; i <= n; i++)
  {
   powerOf10[i] = powerOf10[i - 1].multiply(BigInteger.TEN);
  }

  preTable1 = new BigInteger[numberSystem][n + 1];
  preTable2 = new int[numberSystem][n + 1];

  // preTable[i][j] 0-i的N次方出现0-j次的值
  for (int i = 0; i < numberSystem; i++)
  {
   for (int j = 0; j <= n; j++)
   {
   preTable1[i][j] = new BigInteger(new Integer(i).toString()).pow(n)
     .multiply(new BigInteger(new Integer(j).toString()));

   for (int k = n; k >= 0; k--)
   {
    if (powerOf10[k].compareTo(preTable1[i][j]) < 0)
    {
     preTable2[i][j] = k;
     break;
    }
   }
   }
  }
 }

 public static List<BigInteger> search(int num)
 {
  NarcissusNumber narcissusNumber = new NarcissusNumber(num);
  narcissusNumber.search(narcissusNumber.numberSystem - 1, BigInteger.ZERO, narcissusNumber.length);
  return narcissusNumber.getResults();
 }

 /**
 * @param currentIndex
 *   记录当前正在选择的数字(0~9)
 * @param sum
 *   记录当前值(如选了3个9、2个8 就是9^N*3+8^N*2)
 * @param remainCount
 *   记录还可选择多少数
 */
 private void search(int currentIndex, BigInteger sum, int remainCount)
 {
  if (sum.compareTo(powerOf10[length]) >= 0)
  {
   return;
  }

  if (remainCount == 0)
  {
   // 没数可选时
   if (sum.compareTo(powerOf10[length - 1]) > 0 && check(sum))
   {
   results.add(sum);
   }
   return;
  }

  if (!preCheck(currentIndex, sum, remainCount))
  {
   return;
  }

  if (sum.add(preTable1[currentIndex][remainCount]).compareTo(powerOf10[length - 1]) < 0)// 见结束条件2
  {
   return;
  }

  if (currentIndex == 0)
  {
   // 选到0这个数时的处理
   selected[0] = remainCount;
   search(-1, sum, 0);
  }
  else
  {
   for (int i = 0; i <= remainCount; i++)
   {
   // 穷举所选数可能出现的情况
   selected[currentIndex] = i;
   search(currentIndex - 1, sum.add(preTable1[currentIndex][i]), remainCount - i);
   }
  }
  // 到这里说明所选数currentIndex的所有情况都遍历了
  selected[currentIndex] = 0;
 }

 /**
 * @param currentIndex
 *   记录当前正在选择的数字(0~9)
 * @param sum
 *   记录当前值(如选了3个9、2个8 就是9^N*3+8^N*2)
 * @param remainCount
 *   记录还可选择多少数
 * @return 如果当前值符合条件返回true
 */
 private boolean preCheck(int currentIndex, BigInteger sum, int remainCount)
 {
  if (sum.compareTo(preTable1[currentIndex][remainCount]) < 0)// 判断当前值是否小于PreTable中对应元素的值
  {
   return true;// 说明还有很多数没选
  }
  BigInteger max = sum.add(preTable1[currentIndex][remainCount]);// 当前情况的最大值
  max = max.pide(powerOf10[preTable2[currentIndex][remainCount]]);// 取前面一部分比较
  sum = sum.pide(powerOf10[preTable2[currentIndex][remainCount]]);

  while (!max.equals(sum))
  {
   // 检验sum和max首部是否有相同的部分
   max = max.pide(BigInteger.TEN);
   sum = sum.pide(BigInteger.TEN);
  }

  if (max.equals(BigInteger.ZERO))// 无相同部分
  {
   return true;
  }

  int[] counter = getCounter(max);

  for (int i = 9; i > currentIndex; i--)
  {
   if (counter[i] > selected[i])// 见结束条件3
   {
   return false;
   }
  }
  for (int i = 0; i <= currentIndex; i++)
  {
   remainCount -= counter[i];
  }
  return remainCount >= 0;// 见结束条件4
 }

 /**
 * 检查sum是否是花朵数
 *
 * @param sum
 *   记录当前值(如选了3个9、2个8 就是9^N*3+8^N*2)
 * @return 如果sum存在于所选集合中返回true
 */
 private boolean check(BigInteger sum)
 {
  int[] counter = getCounter(sum);
  for (int i = 0; i < numberSystem; i++)
  {
   if (selected[i] != counter[i])
   {
   return false;
   }
  }
  return true;
 }

 /**
 * @param value
 *   需要检验的数
 * @return 返回value中0到9出现的次数的集合
 */
 private int[] getCounter(BigInteger value)
 {
  int[] counter = new int[numberSystem];
  char[] sumChar = value.toString().toCharArray();

  for (int i = 0; i < sumChar.length; i++)
  {
   counter[sumChar[i] - &#39;0&#39;]++;
  }

  return counter;
 }

 /**
 * 获得结果
 * 
 * @return
 */
 public List<BigInteger> getResults()
 {
  return results;
 }

 public static void main(String[] args)
 {
  int num = 21;
  System.err.println("正在求解" + num + "位花朵数");
  long time = System.nanoTime();
  List<BigInteger> results = NarcissusNumber.search(num);
  time = System.nanoTime() - time;
  System.err.println("求解时间:\t" + time / 1000000000.0 + "s");
  System.err.println("求解结果:\t" + results);
 }
}
Copy after login

Run to view the results:

Solving for 21-digit flower number


Solution time: 0.327537257s


Solution result: [128468643043731391252, 449177399146038697307]

Summarize

The above is the detailed content of Java implements sample code to quickly find 21-digit flower numbers. For more information, please follow other related articles on the PHP Chinese website!

Related labels:
source:php.cn
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template