All Ancestors of a Node in a Directed Acyclic Graph

WBOY
Release: 2024-07-17 19:34:52
Original
395 people have browsed it

2192. All Ancestors of a Node in a Directed Acyclic Graph

Medium

You are given a positive integer n representing the number of nodes of a Directed Acyclic Graph (DAG). The nodes are numbered from 0 to n - 1 (inclusive).

You are also given a 2D integer array edges, where edges[i] = [fromi, toi] denotes that there is a unidirectional edge from fromi to toi in the graph.

Return a list answer, where answer[i] is the list of ancestors of the ith node, sorted in ascending order.

A node u is an ancestor of another node v if u can reach v via a set of edges.

Example 1:

All Ancestors of a Node in a Directed Acyclic Graph

  • Input: n = 8, edgeList = [[0,3],[0,4],[1,3],[2,4],[2,7],[3,5],[3,6],[3,7],[4,6]]
  • Output: [[],[],[],[0,1],[0,2],[0,1,3],[0,1,2,3,4],[0,1,2,3]]
  • Explanation: The above diagram represents the input graph.
    • Nodes 0, 1, and 2 do not have any ancestors.
    • Node 3 has two ancestors 0 and 1.
    • Node 4 has two ancestors 0 and 2.
    • Node 5 has three ancestors 0, 1, and 3.
    • Node 6 has five ancestors 0, 1, 2, 3, and 4.
    • Node 7 has four ancestors 0, 1, 2, and 3.

Example 2:

All Ancestors of a Node in a Directed Acyclic Graph

  • Input: n = 5, edgeList = [[0,1],[0,2],[0,3],[0,4],[1,2],[1,3],[1,4],[2,3],[2,4],[3,4]]
  • Output: [[],[0],[0,1],[0,1,2],[0,1,2,3]]
  • Explanation: The above diagram represents the input graph.
    • Node 0 does not have any ancestor.
    • Node 1 has one ancestor 0.
    • Node 2 has two ancestors 0 and 1.
    • Node 3 has three ancestors 0, 1, and 2.
    • Node 4 has four ancestors 0, 1, 2, and 3.

Constraints:

  • 1 <= n <= 1000
  • 0 <= edges.length <= min(2000, n * (n - 1) / 2)
  • edges[i].length == 2
  • 0 <= fromi, toi <= n - 1
  • fromi != toi
  • There are no duplicate edges.
  • The graph is directed and acyclic.

Solution:

class Solution {

    /**
     * @param Integer $n
     * @param Integer[][] $edges
     * @return Integer[][]
     */
    function getAncestors($n, $edges) {
        $adjacencyList = array_fill(0, $n, []);
        foreach ($edges as $edge) {
            $from = $edge[0];
            $to = $edge[1];
            $adjacencyList[$to][] = $from;
        }

        $ancestorsList = [];

        for ($i = 0; $i < $n; $i++) {
            $ancestors = [];
            $visited = [];
            $this->findChildren($i, $adjacencyList, $visited);
            for ($node = 0; $node < $n; $node++) {
                if ($node == $i) continue;
                if (in_array($node, $visited))
                    $ancestors[] = $node;
            }
            $ancestorsList[] = $ancestors;
        }

        return $ancestorsList;
    }

    private function findChildren($currentNode, &$adjacencyList, &$visitedNodes) {
        $visitedNodes[] = $currentNode;
        foreach ($adjacencyList[$currentNode] as $neighbour) {
            if (!in_array($neighbour, $visitedNodes)) {
                $this->findChildren($neighbour, $adjacencyList, $visitedNodes);
            }
        }
    }
}




Contact Links

  • LinkedIn
  • GitHub

The above is the detailed content of All Ancestors of a Node in a Directed Acyclic Graph. For more information, please follow other related articles on the PHP Chinese website!

source:dev.to
Statement of this Website
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Popular Tutorials
More>
Latest Downloads
More>
Web Effects
Website Source Code
Website Materials
Front End Template
About us Disclaimer Sitemap
php.cn:Public welfare online PHP training,Help PHP learners grow quickly!