Wir erhalten ein Diagramm mit einem Quellscheitelpunkt. Wir müssen den kürzesten Weg vom Quellscheitelpunkt zu allen anderen Scheitelpunkten des Diagramms finden.
Der Algorithmus von Dijikstra ist ein gieriger Algorithmus zum Finden des kürzesten Pfads von einem Quellscheitelpunkt zum Wurzelknoten eines Diagramms zum Wurzelknoten des Diagramms.
Step 1 : Create a set shortPath to store vertices that come in the way of the shortest path tree. Step 2 : Initialize all distance values as INFINITE and assign distance values as 0 for source vertex so that it is picked first. Step 3 : Loop until all vertices of the graph are in the shortPath. Step 3.1 : Take a new vertex that is not visited and is nearest. Step 3.2 : Add this vertex to shortPath. Step 3.3 : For all adjacent vertices of this vertex update distances. Now check every adjacent vertex of V, if sum of distance of u and weight of edge is elss the update it.
Lassen Sie uns ein Programm erstellen, das auf diesem Algorithmus basiert.
#include <limits.h> #include <stdio.h> #define V 9 int minDistance(int dist[], bool sptSet[]) { int min = INT_MAX, min_index; for (int v = 0; v < V; v++) if (sptSet[v] == false && dist[v] <= min) min = dist[v], min_index = v; return min_index; } int printSolution(int dist[], int n) { printf("Vertex Distance from Source\n"); for (int i = 0; i < V; i++) printf("%d \t %d\n", i, dist[i]); } void dijkstra(int graph[V][V], int src) { int dist[V]; bool sptSet[V]; for (int i = 0; i < V; i++) dist[i] = INT_MAX, sptSet[i] = false; dist[src] = 0; for (int count = 0; count < V - 1; count++) { int u = minDistance(dist, sptSet); sptSet[u] = true; for (int v = 0; v < V; v++) if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v]) dist[v] = dist[u] + graph[u][v]; } printSolution(dist, V); } int main() { int graph[V][V] = { { 0, 6, 0, 0, 0, 0, 0, 8, 0 }, { 6, 0, 8, 0, 0, 0, 0, 13, 0 }, { 0, 8, 0, 7, 0, 6, 0, 0, 2 }, { 0, 0, 7, 0, 9, 14, 0, 0, 0 }, { 0, 0, 0, 9, 0, 10, 0, 0, 0 }, { 0, 0, 6, 14, 10, 0, 2, 0, 0 }, { 0, 0, 0, 0, 0, 2, 0, 1, 6 }, { 8, 13, 0, 0, 0, 0, 1, 0, 7 }, { 0, 0, 2, 0, 0, 0, 6, 7, 0 } }; dijkstra(graph, 0); return 0; }
Vertex Distance from Source 0 0 1 6 2 14 3 21 4 21 5 11 6 9 7 8 8 15
Das obige ist der detaillierte Inhalt vonDijkstra-Kürzeste-Pfad-Algorithmus für C/C++-Programme. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!