Für das ebene Koordinatensystem kann der Winkelbereichθ
zwischen einem beliebigen Strahl OP und der x-Achse [0,2π) oder (-π,&pi) betragen ;] , sofern nicht anders angegeben, verwenden wir Letzteres
um den PunktPc = (x, y, z)
im kartesischen Raumkoordinatensystem in die Form des sphärischen Koordinatensystems auszudrückenPs = ( θ , ϕ , r ) >θ
的范围,可以取[0,2π)或者(-π,π],如无特殊说明, 我们统一使用后者。
将笛卡尔空间坐标系中的点Pc = ( x , y , z )
表示成球体坐标系中的形式Ps = ( θ , ϕ , r )
。
其中
根据球坐标的定义,要求θ∈[−π,π],ϕ∈[−π/2,π/2] ,r∈[0 , +∞)
。
对于θ
,正切函数的周期是 π,因此反正切函数 arctan 一般也只取一个周期,其定义域是 R,值域是(−π/2 , π/2) 。为了解决这个问题,引入了 Arctan 函数,也就是 arctan2 函数。
atan2 函数的使用 atan2(delta_y , delta_x)
import math a = math.atan2(400,-692.820) # 2.6179936760992044 angle = a/math.pi*180 # 149.99998843242386
atan 函数的使用 atan(delta_y / delta_x)
import math delta_y = 400 delta_x = -692.820 if delta_x == 0: b = math.pi / 2.0 angle = b/math.pi*180 if delta_y == 0: angle = 0.0 elif delta_y < 0: angle -= 180 else: b = math.atan(delta_y/delta_x) angle = b/math.pi*180 if delta_y > 0 and delta_x < 0: angle = angle + 180 if delta_y < 0 and delta_x < 0: angle = angle - 180 b,angle # (-0.5235989774905888, 149.99998843242386)
atan 和 atan2 的异同
参数的个数不同
两者返回值都是弧度
如果 delta_x等于0,atan2依然可以计算,但是 atan 则需要提前判断,否则就会导致程序出错
象限的处理
atan2(b,a)是4象限反正切,它的取值不仅取决于正切值b/a,还取决于点(b,a) 落入哪个象限:
当点 (b,a) 落入第一象限(b>0, a>0)时,atan2(b,a)的范围是0 ~ pi/2
当点 (b,a)落入第二象限(b>0, a<0)时,atan2(b,a)的范围是pi/2 ~ pi
当点 (b,a)落入第三象限(b<0, a<0)时,atan2(b,a)的范围是-pi~-pi/2
当点 (b,a) 落入第四象限(b<0, a>0)时,atan2(b,a)的范围是-pi/2~0
而 atan(b/a) 仅仅根据正切值为a/b求出对应的角度 (可以看作仅仅是2象限反正切):
当 b/a > 0 时,atan(b/a)取值范围是0 ~ pi/2
当 b/a < 0 时,atan(b/a)取值范围是-pi/2~0
点 (b,a) 落入第一象限 (b>0, a>0)或
第四象限(b<0, a>0)
时,atan2(b,a) = atan(b/a)
点 (b,a) 落入第二象限 (b>0, a<0)
,b/a<0,故atan(b/a)取值范围始终是-pi/2~0
,然而,atan2(b,a)的范围是pi/2 ~ pi
,故atan(b/a) 计算角度值要加180。
点 (b,a) 落入第三象限(b<0, a<0)
,b/a>0,故 atan(b/a) 取值范围是0 ~ pi/2
,而此时atan2(b,a)的范围是-pi~-pi/2
θ ∈[−π,π], ϕ∈[−π/2,π/2], r∈[0, +∞)
. Für
θ
ist die Periode der Tangensfunktion π, sodass die Arcustangensfunktion arctan im Allgemeinen nur eine Periode benötigt, ihr Definitionsbereich R ist und ihr Wertebereich (−π/ 2, π/2). Um dieses Problem zu lösen, wurde die Arctan-Funktion, auch bekannt als arctan2-Funktion, eingeführt.
atan2-Funktionsverwendung atan2(delta_y, delta_x)rrreeeatan-Funktionsverwendung atan(delta_y / delta_x)rrreeeÄhnlichkeiten und Unterschiede zwischen atan und atan2
0 ~ pi/2
pi/2 ~ pi
-pi/2~0
und atan(b/a ) wird nur basierend auf dem Tangenswert von a/b berechnet. Der entsprechende Winkel (kann nur als Arcustangens der beiden Quadranten angesehen werden):
0 ~ pi/2
-pi/2~0
WertebereichDer vierte Quadrant (b<0, a>0). )
,atan2(b,a) = atan(b/a)
zweiten Quadranten (b>0, a<0)
, b/a<0, Daher ist der Wertebereich von atan(b/a) immer-pi/2~0
. b,a) istpi/2 ~ pi
Daher müssen 180 zum durch atan(b/a) berechneten Winkelwert addiert werden.dritten Quadranten (b<0, a<0)
, b/a>0, also der Wertebereich von atan(b/a ) ist0 ~ pi/2
, und zu diesem Zeitpunkt ist der Bereich von atan2(b,a)-pi~-pi/2
, also atan(b/a ) berechnet den Winkel. Der Wert wird um 180 reduziert. Fazit: atan- und atan2-Funktionen. Es wird empfohlen, die atan2-Funktion zu verwendenDas obige ist der detaillierte Inhalt vonSo implementieren Sie den Arctan-Konvertierungswinkel in Python. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!